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Abstract

With the increase of the number of transistors integrated
on a chip, efficient use of transistors and scalable improve-
ment of effective performance of a processor are getting im-
portant problems. However, it has been thought that pop-
ular superscalar and VLIW would have difficulty to ob-
tain scalable improvement of effective performance in fu-
ture because of the limitation of instruction level paral-
lelism. To cope with this problem, a single chip multipro-
cessor (SCM) approach with multi grain parallel processing
inside a chip, which hierarchically exploits loop parallelism
and coarse grain parallelism among subroutines, loops and
basic blocks in addition to instruction level parallelism, is
thought one of the most promising approaches. This pa-
per evaluates effectiveness of the single chip multiproces-
sor architectures with a shared cache, global registers, dis-
tributed shared memory and/or local memory for near fine
grain parallel processing as the first step of research on
SCM architecture to support multi grain parallel process-
ing. The evaluation shows OSCAR (Optimally Scheduled
Advanced Multiprocessor) architecture having distributed
shared memory and local memory in addition to centralized
shared memory and attachment of global register gives us
significant speed up such as 13.8% to 143.8% for four pro-
cessors compared with shared cache architecture for ap-
plications which have been difficult to extract parallelism
effectively.

1. Introduction

Advances in semiconductor technology allow us to inte-
grate a lot of execution units, memory or even processors
on a single chip[12]. These resources have been used for
extracting instruction level parallelism (ILP) in superscalar
and VLIW architectures. However, it has been said that

there is the limitation of ILP in programs and it is difficult
to obtain scalable improvement of effective performance for
such ILP processors. Therefore, to use these resources ef-
fectively, next generation microprocessor architectures[2,
11, 18, 19, 12] and their compilers[17, 13, 16] have been
widely researched. Among these architectures, a single chip
multiprocessor (SCM) architecture, which uses thread level
parallel processing with speculative execution[18, 17, 13] or
integrates many simple processing elements[16, 19, 12], is
one of the most promising architectures. The authors think
that the SCM architecture to support multigrain parallel pro-
cessing, which can exploit multiple grains of parallelism hi-
erarchically, allows us to develop a scalable and cost effec-
tive computer system.

This paper evaluates effectiveness of the SCM with a
shared cache, global registers, distributed shared memory
and/or local memory for near fine grain parallel processing
as the first step of research on SCM architecture to support
multi grain parallel processing.

The rest of this paper is organized as follows. Section 2
gives a brief overview of multigrain parallel processing and
detailed explanation of near fine grain parallel processing.
Section 3 describes the SCM architecture for supporting the
near fine grain parallel processing, and architectures to be
evaluated in this paper. Section 4 evaluates performance of
the architectures in near fine grain parallel processing us-
ing real application programs and OSCAR multigrain par-
allelizing compiler[14, 6].

2. Multigrain Parallel Processing

This section gives a overview of the multi grain paral-
lel processing which allows us to exploit much more par-
allelism than instruction level parallelism on a single chip
multiprocessor.

The multigrain parallel processing[8] hierarchically ap-
plies the macro-dataflow processing[3], which uses coarse



grain parallelism among loops, subroutines, and basic
blocks, the loop parallel processing that uses iteration level
parallelism and near fine grain parallel processing[7] which
uses statement level parallelism inside a basic block.

The multi grain parallelization is automatically per-
formed by OSCAR Fortran multigrain parallelizing
compiler[14, 6] used for the performance evaluation of
SCM architectures in this paper.

2.1. Coarse-grain Task Parallel Processing

In the macro data flow processing, firstly, a Fortran pro-
gram is decomposed into three kinds of coarse grain tasks
or macrotasks (MTs), such as Block of Pseudo Assignment
statements (BPA), Repetition Block (RB) and Subroutine
Block (SB)[3].

A BPA is usually defined as an ordinary basic block
(BB). However, it is sometimes defined by decomposing a
basic block into independent blocks to extract larger par-
allelism or by fusing multiple basic blocks into a coarser
macrotask, or BPA[14].

A RB is a Do loop or a loop generated by a backward
branch, namely, an outermost natural loop.

As to a SB, the compiler defines subroutines, to which
the in-line expansion technique cannot be efficiently ap-
plied, as SBs.

Furthermore, SBs and RBs can be hierarchically decom-
posed into sub-macrotasks. For the sub-macrotasks, the
macro dataflow processing scheme can be hierarchically ap-
plied to exploit parallelism inside SB and RB[15].

After generation of macrotasks, the compiler analyzes
control flow and data flow among macrotasks. The result
of analysis is represented by a directed acyclic graph called
Macro-Flow-Graph (MFG)[3, 4]. Figure1 shows an exam-
ple of a macroflow graph. In this MFG, nodes represent
macrotasks, such as BPAs, RBs, and SBs. Dotted edges
represent control-flow. Solid edges represent data depen-
dencies among macrotasks. Small circles inside nodes rep-
resent conditional branch statements inside macrotasks.

Next, in order to find the maximum parallelism among
macrotasks considering control dependencies and data de-
pendencies, the compiler analyzes an earliest-executable-
condition for the macrotask[3, 4]. The earliest-executable-
condition of macrotask i (MTi), is a condition on which
MTi may begin its execution earliest.

These earliest-executable-conditions of macrotasks are
represented by a directed acyclic graph called MacroTask-
Graph (MTG)[3, 4], as show in Figure2. In MTG, nodes
represent macrotasks. Dotted edges represent extended con-
trol dependencies. Solid edges represent data dependencies.

The extended control dependence edges are classified
into two types of edges, namely, ordinary control depen-
dence edges and co-control dependence edges. The co-
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Figure 1. Macroflow graph(MFG)

control dependence edges represent conditions under which
the data dependence predecessor of MTi (namely, MTk on
which MTi is data dependent) is not executed.

In addition, a data dependence edge, or a solid edge,
originating from a small circle has two meanings, namely,
an extended control dependence edge and a data depen-
dence edge. Arcs connecting edges at their tails or heads
have two different meanings. A solid arc means that edges
connected by the arc are in an AND relationship. A dot-
ted arc means that edges connected by the arc are in an
OR relationship. Small circles inside nodes represent condi-
tional branch statements. For example, earliest-executable-
condition of MT8 is that MT1 branches to MT3 or MT2

branches to MT4 and the condition of MT6 is that MT3 fin-
ishes execution or MT2 branches to MT6.

After generation of MTG, if there exists runtime un-
certainties inside a target program, such as, conditional
branches among macrotasks and a variation of macrotask
execution time, macrotasks are assigned onto processor-
clusters (PCs), processors or single chip multiprocessors at
runtime by a dynamic scheduling routine generated exclu-
sively for the target program and embedded into user pro-
gram by the compiler. Otherwise, macrotasks are assigned
by static scheduling in compile time.

2.2. Loop Level Parallel Processing

Macrotasks are assigned to processor-clusters (PCs) dy-
namically or statically as mentioned in the previous sub-
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section. If a macrotask assigned to a PC is a Doall loop,
the macrotask is processed in the medium grain, or iteration
level grain, by processing elements (PEs) inside a PC.

2.3. Near-fine grain parallel processing

If a macrotask assigned to a PC is BPA or sequential
loop, it is decomposed into the near fine grain tasks, each of
which consists of a statement, and processed in parallel by
PEs inside a PC or a single chip multiprocessor.

Figure3 shows an example of BPA containing 17 state-
ments that solves a random sparse matrix using Crout
method. This kind of basic block is generated by the sym-
bolic generation technique, which has been used in elec-
tronic circuit simulators like SPICE and by partial evalua-
tion.

The compiler analyzes data dependencies among the
statements and generates a task graph that represents data
dependencies among near fine grain tasks. Figure4 shows
an example of task graph for the BPA in Figure3. In the task
graph, the dependencies, or precedence constraints, among
the generated tasks can be represented by edges, and each
task corresponds to a node. In Figure4, figure inside a node
circle represent the task number, i, and those beside it rep-
resent a task-processing time on a PE, ti. An edge directed

from node Ni toward Nj represents the partially ordered
constraint that task Ti precedes task Tj . When we consider
a data transfer time between tasks, each edge generally has
a variable weight. Its weight, tij will be a data transfer time
between task Ti and Tj if Ti and Tj are assigned to dif-
ferent PEs. In Figure4, it is assumed that data transfer and
synchronization takes nine clocks. It will be zero or a time
to access register or local data memory if the tasks are as-
signed to the same PE.

These tasks are assigned onto processors statically since
there exist only data dependencies among near fine grain
tasks inside BPA. However, since this static schedul-
ing problem is strong NP hard, the OSCAR compiler
uses four heuristic scheduling algorithms CP/DT/MISF,
CP/ETF/MISF, ETF/CP and DT/CP[4] and chooses the best
schedule automatically.

After scheduling, the compiler generates the machine
codes for each PE by putting together instructions for tasks
assigned to the PE and by inserting instructions for data
transfer and synchronization into the required places using a
statically scheduled result. In this time, the compiler can op-
timize the codes by making full use of information obtained
from the static schedule. For example, when a task should
pass shared data to other tasks assigned to the same PE,
the data can be passed through registers on the PE. In addi-
tion, the compiler minimizes the synchronization overhead
by considering the information about tasks to be synchro-
nized, the task assignment, and the execution order[7]. The
first optimization is the elimination of redundant synchro-
nization as shown in Figure5. In this figure, tasks A, B, and
C are allocated to PE1, task D is allocated to PE2, and task
E is allocated to PE3. The edges among tasks show data de-
pendencies. Therefore, edges across PEs mean data transfer
and synchronization among PEs. If the data transfers and
synchronization among PEs are realized by using the cen-
tralized shared memory, task E does not need to check the
synchronization flag that indicates the completion of task
D, because completion of tasks has already been confirmed
by tasks B and C, which are precedent tasks of E. For the
architecture having global register file explained in section
3.5, the compiler also can assign near fine grain data trans-
fer and synchronization to global registers efficiently with
statically scheduled information.

3. Architecture for Near Fine Grain Parallel
Processing

This section describes architectural supports in SCM for
near fine grain parallel processing.

In multigrain parallel processing, as mentioned before,
near fine grain parallel processing is normally applied to
a basic block and the compiler can minimize data trans-
fer and synchronization overhead by static scheduling. In
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Figure 3. Near fine grain tasks.

order to generate most efficient parallel machine code pre-
cisely scheduled in clock level, every instruction should be
executed in fixed clock cycles.

In addition, low-latency data transfer and low-overhead
synchronization mechanisms are required to minimize the
overhead among processors. To this purpose, distributed
shared memory (DSM) having two ports, shared cache
and/or global register seems to be useful. Especially, DSM
can transfer shared data without preventing remote PE ex-
ecution and minimize data synchronization overhead since
busy wait for synchronization flag is performed inside a pro-
cessor without consuming network and centralized shared
memory band width.

Also, PE local data memory (LDM), which is used for
storing PE local data and can have twice larger memory
than DSM since local memory only have a single port,
can be used effectively[1, 5]. Furthermore, global registers
among processors allow us to reduce data and synchroniza-
tion overhead with good register allocation technique in the
compiler.

3.1. Traget Architectures

Considering architecture supports mentioned above, this
section describes single-chip multiprocessor architectures
evaluated in this paper.

The authors prepared shared cache type architecture and
OSCAR type architecture, which has distributed shared
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Figure 4. Task graph for near fine grain tasks.

memory and local data memory in addition to centralized
shared memory. Effectiveness of global register files at-
tached to the both architectures is also evaluated.

3.2. Common Specification

Each SCM architecture has one through four processing
elements (PEs) on a chip and each of these has OSCAR
RISC architecture CPU core[10, 9]. This CPU core is typi-
cal single instruction issue load/store architecture with 32bit
fixed instruction length. This CPU also has 64 general-
purpose-registers which can be used for integer and floating
point operation, and can execute every instruction including
floating multiply and floating addition in one clock cycle
and the other floating operation in fixed clock cycles.

Each PE has local-program-memory (LPM) which stores
program code exclusively generated to the PE by compiler.
This LPM can supplies instruction in one clock cycle. This
assumption is made because it is thought that performance
difference between LPM and instruction cache is small with
the workload which is not so large and fits in cache size at
hot start time.

Furthermore, each SCM processor has centralized shared
memory (CSM) outside the chip. Access latency to the
CSM is assumed as 20 clock cycles.

3.3. Shared Data Cache Type Architecture

The shared data cache type architecture assumed in this
paper has a large data cache shared among PEs as shown
in Figure6. Each PE has a CPU core and local program
memory (LPM).
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This data cache has multiple banks. Each bank is con-
nected to each port by a switch and if multiple cache ac-
cesses occur to the same bank, only one access is taken at
the clock. The associativity of this cache is 4-way set asso-
ciative and write policy is write back. The capacity of this
shared cache is 4M bytes and access latency is one clock
cycle.

In this shared data cache architecture, storing data, load-
ing data and setting synchronization flag take one clock cy-
cle respectively. Checking synchronization flag takes three
clock cycles.

3.4. OSCAR Type Architecture

The OSCAR type single chip multiprocessor architec-
ture based on multi processor system OSCAR[10] as show
in Figure7 is evaluated.

In the OSCAR type architecture, each PE has CPU,
LPM, local data memory (LDM), distributed shared mem-
ory (DSM) having two ports and data transfer unit(DTU)
which can be used for overlapping of data transfer and com-
putation by compiler control though this function is not used
in this paper. These PEs are connected by three buses.

The DSM on each PE can be accessed simultaneously
by the PE itself and another PE, and is used for direct data
transfer and synchronization among PEs.

The capacity of LDM is 1M bytes per PE respectively

CPU

LPM

PE0 PE1 PE2 PE3

Multiport Nonblocking Cache

CSM

Chip

Figure 6. Shared data cache architecture.

and its access latency is one clock cycle. Similarly, the ca-
pacity of DSM is 16K bytes per PE respectively and local
DSM access latency is one clock cycle and that of remote
DSM is four clock cycles.

Using this DSM, near fine grain data transfer does not
interfere remote PE execution and can minimize data syn-
chronization overhead since busy-waiting for synchroniza-
tion flag is performed inside a PE.

In this OSCAR type architecture, storing data and setting
synchronization flag take four clocks respectively, loading
data takes one clock cycle and checking synchronization
flag takes three clock cycles.

3.5. Global Registers

In this paper, effectiveness of multi-port global register
(GR) attached to the previous two architectures as sown in
Figure8 are evaluated. Number of the global registers is
limited in sixteen because of the usable register field in OS-
CAR instruction set.

Every PE can access GR simultaneously in one clock cy-
cle. These registers are used for near fine grain data transfer
and synchronization. Therefore, using global register file,
storing data and setting synchronization flag take one clock
cycle respectively.

4. Performance Evaluation

In this section, the shared data cache type architecture
and the OSCAR type architecture for near fine grain parallel
processing are evaluated.

For the evaluation, the following workloads are used.

Random sparse matrix solution
This program is Fortran loop-free code that consists of
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arithmetic assignment statements, or 94 near fine grain
tasks.

NS3D
This program is a part of CFD program “NS3D” devel-
oped by National Aerospace Laboratory in Japan. It is
a loop body inside the largest loop inside a subroutine
SUB4. This loop body has 429 near fine grain tasks.

FPPPP
This program is a subroutine “FPPPP” of program
“FPPPP” from SPECfp95 benchmark programs. This
subroutine consumes about 35% of total execution
time and has 333 near fine grain tasks.

Electrical circuit simulation

This program is similar to Spice circuit simulation pro-
gram using the Crout method as a matrix solver. Inner-
most loop of this program has 221 statements.

These programs are processed in near fine grain on
four types of single chip multi processor architectures,
such as shared cache (shown as CACHE-WB in Figure9
to Figure12), OSCAR type (OSCAR), shared cache with
global registers (CACHE-WB/GR) and the OSCAR with
global registers (OSCAR/GR) having 1, 2 or 4 processors.

Figure9 to Figure12 show the speed-up ratio based on
sequential execution time on the OSCAR architecture.

Figure9 shows that the OSCAR gives us 3.02 times
speed-up for four PEs and the CACHE-WB gives us 2.76
times speed-up. However, Figure10 shows that CACHE-
WB achieves 1.76 times speed-up for two PEs and de-
creases its performance to 1.25 times for four PEs, while
the OSCAR achieves 1.50 times speed-up for two PEs and
2.14 times for four PEs.

Figure11 and Figure12 give us almost same result. In
Figure11, the OSCAR gives us 2.27 times speed-up for
four PEs and the CACHE-WB gives us 1.03 times speed-
up. Figure12 shows that the OSCAR gives us 1.55 times
speed-up for four PEs and the CACHE-WB gives us 0.91
times speed-up. These results show that the OSCAR type
architecture can increase its performance with the increase
of number of PEs.

The reason of performance degradation of the CACHE-
WB is considered as bank conflict by large amount of
data transfer and synchronizations among PEs because all
of data transfer and busy-waiting for synchronization flag
check use the shared cache. However, in the case of OS-
CAR type architecture, each PE can minimize the interfer-
ences to other PE because it stores PE private date in LDM
and directly stores shared data and synchronization flag to
the remote DSM.

To examine such performance differences between OS-
CAR type and CACHE type, the ratio of memory access
clocks to total program execution clocks for four PEs is
measured. In Figure13 and Figure14, DATA(R) shows the
ratio of “read” operations, or “load” to the total clocks.
DATA(W) shows the ratio of “write” operations, or “store”.
SYNC+DT(R) shows the ratio of “check” operations for
synchronization flag to “read” operations for received data.
SYNC+DT(W) shows the ratio of “send” operations for
shared data to “set” operations for synchronization flag. In
the figures, EXEC shows the ratio of integer and floating
point instruction execution clocks to the total clocks.

In Figure13, the whole memory access ratio of the OS-
CAR type and that of the CACHE type are almost same.
However, SYNC+DT for the CACHE type is lower than the
OSCAR type. This is because the CACHE type can send
data in one clock, while the OSCAR type takes four clocks
in remote DSM access. On the other hand, in Figure14,
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the whole memory access ratio is higher than Figure13, and
the ratio of DATA(R/W) for the CACHE type is higher than
the OSCAR type. This shows that FPPPP needs more data
transfer and synchronization than the random sparse matrix
solution. These data transfer causes bank conflicts among
PEs and interferes loading and storing data. In such an ap-
plication which gives pressure to shared cache memory, the
OSCAR type gives us better performance than the CACHE
type.

As to effectiveness of global register, especially OS-
CAR/GR in Figure10 improves its performance obviously.
In this figure, OSCAR/GR improves its performance 17.5%
for four PEs than the OSCAR. The attachment of global reg-
ister is very effective for this kind of application that need
many data transfers and synchronization among PEs.
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5. Conclusions

This paper has evaluated effectiveness of the four kinds
of single chip multiprocessor (SCM) architectures, such as
shared data cache type, OSCAR type and those with global
registers for near fine grain parallel processing as the first
step of research on SCM architecture for supporting multi-
grain parallel processing.

The evaluation shows OSCAR type architecture assum-
ing the compiler optimization having local memory and dis-
tributed shared memory gives us better performance than
shared data cache type architecture in near fine grain par-
allel processing. For instance, OSCAR type architecture
gives us 9.6% better performance for four PEs than shared
data cache type in the case of solution of random sparse
matrix. OSCAR type also attained 2.19 times better per-
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dom sparse matrix solution.

formance for four PEs than shared data cache type in the
“FPPPP”. Furthermore, adding 16 global registers can im-
prove performance by 10 – 17% for the OSCAR type archi-
tecture.

Evaluation of various single chip multi processor archi-
tectures including snoop cache and/or different ILP proces-
sor architecture like SPARC or PowerPC using more pro-
grams from Perfect and SPECfp benchmarks are next re-
search topics.
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