
Coarse-grain Task Parallel Processing Using the

OpenMP Backend of the OSCAR Multigrain

Parallelizing Compiler

Kazuhisa Ishizaka, Motoki Obata, Hironori Kasahara
fishizaka,obata,kasaharag@oscar.elec.waseda.ac.jp

Waseda University
3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan

Abstract. This paper describes automatic coarse grain parallel process-
ing on a shared memory multiprocessor system using a newly developed
OpenMP backend of OSCAR multigrain parallelizing compiler for from
single chip multiprocessor to a high performance multiprocessor and a
heterogeneous supercomputer cluster. OSCAR multigrain parallelizing
compiler exploits coarse grain task parallelism and near �ne grain paral-
lelism in addition to traditional loop parallelism. The OpenMP backend
generates parallelized Fortran code with OpenMP directives based on an-
alyzed multigrain parallelism by middle path of OSCAR compiler from
an ordinary Fortran source program. The performance of multigrain par-
allel processing function by OpenMP backend is evaluated on an o� the
shelf eight processor SMP machine, IBM RS6000. The evaluation shows
that the multigrain parallel processing gives us more than 2 times speed
up compared with a commercial loop parallelizing compiler, IBM XL
Fortran compiler, on the SMP machine.

1 Introduction

Automatic parallelizing compilers have been getting more important with the
increase of parallel processors in a high performance multiprocessor system and
use of multiprocessor architecture inside a single chip and for an upcoming home
server for improving e�ective performance, cost-performance and ease of use.
Current parallelizing compilers exploit loop parallelism, such as Do-all and Do-
across[1, 2]. In these compilers, Do-loops are parallelized using various data de-
pendency analysis techniques [3, 4] such as GCD, Banerjee's inexact and exact
tests [1, 2], OMEGA test[5], symbolic analysis[6], semantic analysis and dynamic
dependence test and program restructuring techniques such as array privatiza-
tion[7], loop distribution, loop fusion, strip mining and loop interchange[8, 9].

For example, Polaris compiler[10{12] exploits loop parallelism by using in-
line expansion of subroutine, symbolic propagation, array privatization [7, 11]
and run-time data dependence analysis[12]. PROMIS compiler[13, 14] combines
Parafrace2 compiler[15] using HTG[16] and symbolic analysis techniques[6], and
EVE compiler for �ne grain parallel processing. SUIF compiler parallelizes loop

II

by using inter-procedure analysis [17{19], unimodular transformation and data
locality optimization[20, 21].

E�ective optimization of data localization is more and more important be-
cause of the increasing a speed gap between memories and processors. Also, many
researches for data locality optimization using program restructuring techniques
such as blocking, tiling, padding and data localization, are proceeding for high
performance computing and single chip multiprocessor systems [20, 22{24].

OSCAR compiler has realized a multigrain parallel processing [25{27] that
e�ectively combines the coarse grain task parallel processing [25{30], which can
be applied from a single chip multiprocessor to HPC multiprocessor systems,
the loop parallelization and near �ne grain parallel processing[31]. In the con-
ventional OSCAR compiler with the backend for OSCAR architecture, coarse
grain tasks are dynamically scheduled onto processors or processor clusters to
cope with the runtime uncertainties by the compiler. As the task scheduler,
the dynamic scheduler in OSCAR Fortran compiler, and distributed dynamic
scheduler[32] have been proposed.

This paper describes the implementation scheme of a thread level coarse grain
parallel processing on a commercially available SMP machine and its perfor-
mance. Ordinary sequential Fortran programs are parallelized using by OSCAR
Compiler with newly developed OpenMP backend automatically and a paral-
lelized program with OpenMP directive is generated. In other words, OSCAR
Fortran compiler is used as a preprocessor which transforms a Fortran program
into a parallelized OpenMP Fortran. Parallel threads are forked only once at
the beginning of the program and joined only once at the end in this scheme to
minimize fork/join overhead. Also, this OSCAR OpenMP backend realizes hier-
archical coarse grain parallel processing only using ordinary OpenMP directives
though NANOS Compiler uses customly made n-thread library[33].

The performance of the proposed multigrain parallel processing in OSCAR
multigrain compiler is evaluated on IBM RS6000 SP 604e High Node 8 processors
SMP machine from among many commercial SMP machines. In the evaluation,
OSCAR multigrain compiler automatically generates coarse grain parallel pro-
cessing codes using a subset of OpenMP directives supported by IBM XL Fortran
version 5.1. The codes are compiled by XL Fortran and executed on 8 processors
of RS6000 SP 604e High Node. OSCAR compiler with IBM XL Fortran compiler
give us 1.5 to 3 times larger speedup than the separate use of IBM XL Fortran
parallelizing compiler for spec95fp TOMCATV, SWIM, HYDRO2D, MGRID
and Perfect Benchmarks ARC2D.

The rest of this paper is composed as follows. Section 2 introduces the ex-
ecution model of the thread level coarse grain task parallel processing. Section
3 shows the coarse grain parallelization in OSCAR compiler. Section 4 shows
the implementation method of the multigrain parallel processing in OpenMP
backend. Section 5 evaluates the performance of this method on IBM RS6000
SP 604e High Node for several programs like Perfect Benchmarks and SPEC
95fp Benchmarks.

III

2 Execution model of coarse grain task parallel

processing in OSCAR OpenMP backend

This section describes the coarse grain task parallel processing using OpenMP di-
rectives. Coarse grain task parallel processing uses parallelism among three kinds
of macro-tasks(MTs), namely, Basic Block(BB), and Repetition Block(RB), Sub-
routine Block(SB) described in Section 3. Macro-tasks are generated by decom-
position of a source program and assigned to threads or thread groups and
executed in parallel.

In the coarse grain task parallel processing using OSCAR OpenMP backend,
threads are generated only once at the beginning of the program, and joined only
once at the end. In other words, OSCAR OpenMP backend realizes hierarchical
coarse grain parallel processing without hierarchical child thread generation. For
example, in Fig.1, four threads are generated at the beginning of the program,
and all generated threads are grouped to one thread group(group0). Thread
group0 executes MT1, MT2 and MT3.

group0

MT1(BB)

MT2(DOALL)

MT3(RB)

fork

join

group0_0

group0_1

represent thread grouping

MT3_1
MT3_2

MT3_3

BB

D1 D2 D4D3

Fig. 1. execution image

When thread group executes a MT, threads in the group use parallelism in-
side a MT. For example, if MT is a parallelizable loop, threads in group use
parallelism among loop iteration. In Fig.1, a parallelizable loop MT2 is dis-
tributed to four threads in the group. Also, nested parallelism among sub-MTs,
which are generated by decomposition of body of a MT. Sub MTs are assigned
to nested(lower level) thread groups, that are hierarchically de�ned inside a
upper level thread group. For example, MT3 in the Fig.1 is decomposed into
sub-MTs(MT3 1,MT3 2 and MT3 3), and sub-MTs are executed by two nested

IV

thread groups, namely group0 0 and group0 1, each of which have two threads
respectively. These groups are de�ned inside thread group0 which execute MT3.

3 Coarse grain parallelization in OSCAR compiler

This section describes the analysis of OSCAR compiler for coarse grain task
parallel processing. First, OSCAR compiler de�nes coarse grain macro-tasks
from source program, and analyzes parallelism among macro-tasks. Next, the
generated MTs are scheduled to thread groups statically at compile time or
dynamically by embedded scheduling code generated by compiler.

3.1 De�nition of coarse grain task

In the coarse grain task parallel processing, a source program is decomposed into
three kinds of MTs, namely, BB, RB and SB as mentioned above. Generated
MTs are assigned to thread groups, and executed in parallel by threads in the
thread group.

parallel iterations are distributed onto threads inside thread group consider-
ing cache size.

If a RB is a sequential loop having large processing cost or SB, it is decom-
posed into sub-macro-tasks and hierarchically processed by coarse grain task
parallel processing scheme like MT3 in Fig.1.

3.2 Generation of macro-ow graph

After generation of macro-tasks, the data dependency and control ow among
MTs for each layer are analyzed hierarchically, and represented by Macro-Flow
Graph(MFG) as shown in Fig.2(a).

In the Fig.2, nodes represent MTs, solid edges represent data dependencies
among MTs and dotted edges represent control ow. A small circle inside a
node represents a conditional branch inside the MT. Though arrows of edges are
omitted in the MFG, it is assumed that the directions are downward.

3.3 Generation of macro-task graph

To extract parallelism among MTs from MFG, Earliest Executable Condition
analysis considering data dependencies and control dependencies is applied. Ear-
liest Executable Condition represents the conditions on which MT may begin its
execution earliest. It is obtained assuming the following conditions.

1. If MTi data-depends on MTj, MTi can not begin execution before MTj
�nishes execution.

2. If the branch direction of MTj is determined, MTi that control-depends on
MTj can begin execution even though MTj has not completed its execution.

V

Data Dependency
Extended Contorol Dependency
Conditional Branch

OR
AND

Original Control Flow

1

2 3

4

5

6

7

8

910 11

12

13

14

Data Dependency

Control Flow

Conditional Branch

1

2 3

4

5

6

7

8

9 10

11

12

13

14

(b) Macro Task Graph (MTG)(a) Macro Flow Graph (MFG)

Fig. 2. Macro Flow Graph and Macro Task Graph

Then, the original form of Earliest Execution Condition is represented as
follows;

(MTj, on which MTi is control dependent, branches to MTi) AND
(MTk(0�k�jN j), on which MTi is data dependent, completes execution OR it

is determined that MTk is not be executed), where N is the number of
predecessors of MTi

For example, the original form of Earliest Execution Condition of MT6 on
Fig.2(b) is

(MT1 branches to MT3 OR MT2 branches to MT4) AND
(MT3 completes execution OR MT1 branches to MT4).

However, the completion of MT3 means that MT1 already branched to MT3.
Also, \MT2 branches to MT4" means that MT1 already branched to MT2.
Therefore, this condition is redundant and its simplest form is

(MT3 completes execution OR MT2 branches to MT4).

VI

Earliest Execution Condition of MT is represented in Macro-Task Graph(MTG)
as shown in Fig.2(b).

In MTG, nodes represent MTs. A small circle inside nodes represents condi-
tional branches. Solid edges represent data dependencies. Dotted edges represent
extended control dependencies. Extended control dependency means ordinary
normal control dependency and the condition on which a data dependence pre-
decessor of MTi is not executed.

Solid and dotted arcs connecting solid and dotted edges have two di�erent
meanings. A solid arc represents that edges connected by the arc are in AND
relationship. A dotted arc represents that edges connected by the arc are in OR
relation ship.

In MTG, though arrows of edges are omitted assuming downward, an edge
having arrow represents original control ow edges, or branch direction in MFG.

3.4 Scheduling of MTs to thread groups

In the coarse grain task parallel processing, the static scheduling and the dynamic
scheduling are used for assignment of MTs to thread groups.

In the dynamic scheduling, MTs are assigned to thread groups at runtime to
cope with runtime uncertainties like conditional branches. The dynamic schedul-
ing routine is generated and embedded into user program by compiler to elimi-
nate the overhead of OS call for thread scheduling. Though generally dynamic
scheduling overhead is large, in OSCAR compiler the dynamic scheduling over-
head is relatively small since it is used for the coarse grain tasks with relatively
large processing time.

In static scheduling, assignment of MTs to thread groups is determined at
compile-time if MTG has only data dependency edges. Static scheduling is use-
ful since it allows us to minimize data transfer and synchronization overheard
without run-time scheduling overhead.

In the proposed coarse grain task parallel processing, both scheduling schemes
are selectable for each hierarchy.

4 Code generation in OpenMP Backend

This section describes a code for the coarse grain task parallel processing using
threads in OpenMP backend of OSCAR multigrain automatic parallelization.

The code generation scheme is di�erent for each scheduling scheme. There-
fore, after a thread generation method is explained, the code generation scheme
for each scheduling scheme is described.

4.1 Generation of threads

In the proposed coarse grain task parallel processing using OpenMP, the same
number of threads as the number of processors are generated by PARALLEL
SECTIONS directive only once at the beginning of the execution of program.

VII

Generally, to realize nested or hierarchical parallel processing, nested threads
are forked by an upper level thread. However, in the proposed scheme, since
it is assumed that the number of generated thread, thread grouping and the
scheduling scheme applied to each hierarchy are determined at compile-time. In
other words, the proposed scheme realizes this hierarchical parallel processing
with single level thread generation by writing all MT code or embedding hier-
archical scheduling routines in each OpenMP SECTION between PARALLEL
SECTIONS and END PARALLEL SECTIONS.

This scheme allows us to minimize thread fork and join overhead and to
implement hierarchical coarse grain parallel processing without special extension
of OpenMP.

4.2 Static scheduling

If a MTG in a target layer has only data dependencies, the static scheduling is
applied to reduce data transfer, synchronization and scheduling overheads.

In the static scheduling, the assignment of MTs to thread groups is deter-
mined at compile-time. Therefore, each OpenMP SECTION needs only the MTs
that should be executed in the predetermined order.

At runtime, each thread group should synchronize and transfer shared data to
other thread groups in the same hierarchy to satisfy the data dependency among
MTs. Therefore, the compiler generates synchronization code using shared mem-
ory.

A code image for eight threads generated by OpenMP backend of OSCAR
compiler is shown in Fig.3. In this example, static scheduling is applied to the �rst
layer. In Fig.3, eight threads are generated by OpenMP PARALLEL SECTION
directives. The eight threads are grouped into two thread groups, each of which
has four threads. MT1 and 3 are statically assigned to Thread group0 and MT2
is assigned to Thread group1.

When static scheduling is applied, compiler generates di�erent codes for the
thread groups which include only task codes assigned to the thread group.

The assigned MTs to thread groups are processed in parallel by threads inside
the thread group by using static scheduling or dynamic scheduling hierarchically.

4.3 Dynamic scheduling

Dynamic scheduling is applied for a Macro Task Graph with runtime uncertainty
caused by a conditional branch. In the dynamic scheduling, since each thread
group has possibility to execute any MTs, the all MT codes are copied to every
OpenMP SECTION. And each thread group executes MTs selectively according
to the scheduling result.

For the dynamic scheduling, OpenMP backend can generate centralized sched-
uler codes or distributed scheduler codes to be embedded into user code for any
parallel processing layer, or nested level. In Fig3, MT2 assigned onto thread
group1 is processed by four threads in parallel using the centralized scheduler.

VIII

(partial loop)

MT1 (parallelizable loop)

DO DO

END DO

group0_1group0_0
MT3(RB)

2nd layer
thread groups

!$OMP SECTION !$OMP SECTION !$OMP SECTION

Thread 3

!$OMP SECTION

Thread 0 Thread 1 Thread 2

group1group0

MT2(SB)

4 5 6 7
Thread

(partial loop) (partial loop) (partial loop)

Dynamic Scheduler

MT3_2
(MT3_2a) (MT3_2b)

Dynamic Scheduler

Dynamic Scheduler

MT3_1
(MT3_1a) (MT3_1b)

EndMT

Dynamic Scheduler

MT3_2
(MT3_2a) (MT3_2b)

Dynamic Scheduler

Dynamic Scheduler

MT3_1
(MT3_1a) (MT3_1b)

EndMT

END DO

1st layer
thread group

MT1_1(RB) MT1_2(RB) MT1_3(RB) MT1_4(RB)

C
enralized S

cheduler

MT2_1

EndMT

MT2_2

MT2_3

MT2_4

MT2_1

EndMT

MT2_2

MT2_3

MT2_4

MT2_1

EndMT

MT2_2

MT2_3

MT2_4

First layer : MT1, MT2, MT3 : static
2nd Layer : MT2_1, 2_2, ... : centralized dynamic
 : MT3_1, 3_2, ... : disributed dynamic
3rd Layer : MT3_1a, 3_1b, ... : static

Fig. 3. Code image (four threads)

In the centralized scheduler method, a master thread, assigned to a thread, as-
signes macro-tasks to the other three slave threads.

The master thread repeats the following steps.

Behavior of Master thread

step1 Search executable, or ready, MTs of which Earliest Executable Condi-
tion(EEC) are satis�ed by the completion or a branch of the preceding MT
and enqueue the ready MTs to the ready queue.

step2 Choose a MT with highest priority and assigned it to a idle slave thread.
step3 Go back to step1

Also, the compiler generates a special MT called EndMT(EMT) all OpenMP
SECTIONS in each hierarchy. The assignment of EndMT shows the end of its
hierarchy. In other words, if EndMT is scheduled to thread groups, the groups
execution of a hierarchy. As shown in the second layer in Fig.3, the EndMT is
written at the end of layer.

Behavior of slave thread

IX

step1 Wait for the macro-task assignment by master thread.

step2 Execute assigned macro-task.

step3 Send signals to report to the master thread a branch direction and/or
completion of the task execution.

step4 Go back to step1.

In Fig.3, it is assumed that MT2 are executed by Master thread(thread 4)
and three slave threads.

Next, MT3 show an example of distributed dynamic scheduling. In this case,
MT3 is decomposed into sub-macro-tasks and assigned thread group0 0 and
0 1 de�ned inside thread group0. In this example, the thread group0 0 and 0 1
has two threads. Each thread group works as scheduler, which behave same
as master thread described before, though distributed dynamic schedulers need
mutual exclusion to access the shared scheduling data like EEC and ready queue.

The distributed dynamic scheduling routines are embedded into before each
macro-task code as shown in Fig.3. Furthermore, Fig.3 shows MT3 1, 3 2 and
so on are processed by two threads inside thread group0 0, or 0 1.

4.4 Parallel processing in a thread group

This section describes the code generation scheme for the parallel processing
according to a kind of MTs.

Parallelizable loop If a MT is a parallelizable loop, threads in thread group use
parallelism among loop iterations. Therefore, a parallelizable loop is decomposed
to smaller partial loops at compile-time, and partial loop codes are written in
each OpenMP SECTION.

In Fig.3, MT2(RB) in the �rst layer is a parallelizable loop, and four threads
in the thread group can execute MT2 in parallel. Therefore, MT2 is divided to
four partial loops(MT2 1,MT2 2,MT2 3,MT2 4), and each partial loop is written
in each OpenMP SECTION.

Hierarchical coarse grain task parallel processing If a MT is a sequential
loop having large processing cost or a MT is SB to which inline expansion can
not be applied e�ectively, the inside of the MT is decomposed to sub-MTs, and
threads in thread group, which execute the MT, is re-grouped to new thread
groups. Then, the coarse grain task parallel processing is hierarchically realized
inside the MT by new thread groups.

In Fig.3, MT3 in �rst layer is RB. Its inside is decomposed to MT3 1,MT3 2,
and so on, and de�ned as second layer. Four threads in thread group0 in the �rst
layer are re-grouped to two thread groups(group0 0, group0 1). In the second
layer of this example, dynamic scheduling is applied.

X

Fortran77 Source Code

Intermediate Language

OpenMP Fortran Source Code

Native
Machine

for OSCAR
Code

Fortran
VPP Native

Machine
Code

Native
Machine
Code

Intermediate Language

Front End

 Middle Path
Multi Grain Parallelization

OSCAR
Back End

VPP
Back End

OpenMP
Back End

Fortran

OpenMP

STA MPI
Back End Back End

Ultra Sparc
Back End
Power PC

+ STAMPI
(MPI2)

Fortran

Static Scheduling
Dynamic Scheduler Generation

-Coarse Grain Parallelization
-Loop Parallelization
-Near Fine Parallelization

Fig. 4. Overview of OSCAR Fortran Compiler

5 Performance evaluation

This section describes the performance of coarse grain task parallelization by
OSCAR Fortran Compiler for several programs in Perfect benchmarks and SPEC
95fp benchmarks on IBM RS6000 SP 604e High Node 8 processor SMP.

5.1 OSCAR Fortran Compiler

Fig.4 shows the overview of OSCAR Fortran Compiler. It consists of Front
End(FE), Middle Path(MP) and Back Ends(BE). OSCAR Fortran Compiler
has various Back Ends for di�erent target multiprocessor systems like OSCAR
distributed/shared memory multiprocessor system[34], Fujitsu's VPP supercom-
puter, UltraSparc, PowerPC, MPI-2 and OpenMP. OpenMP Backend used in
this paper, generates the parallelized Fortran source code with OpenMP direc-
tives. In other words, OSCAR Fortran Compiler is used as a preprocessor that
transforms from an ordinary sequential Fortran program to OpenMP Fortran
program for SMP machines.

XI

2
4
6
8

1 2 3 4 5 6 7 8
sp

ee
d

up
 r

at
io

number of processers

(a) ARC2D

OSCAR + XLF
XLF only

2
4
6
8

1 2 3 4 5 6 7 8

sp
ee

d
up

 r
at

io

number of processers

(b) SWIM

OSCAR + XLF
XLF only

2
4
6
8

1 2 3 4 5 6 7 8

sp
ee

d
up

 r
at

io

number of processers

(c) TOMCATV

OSCAR + XLF
XLF only

2
4
6
8

1 2 3 4 5 6 7 8

sp
ee

d
up

 r
at

io

number of processers

(d) HYDRO2D

OSCAR + XLF
XLF only

2
4
6
8

1 2 3 4 5 6 7 8

sp
ee

d
up

 r
at

io

number of processers

(e) MGRID

OSCAR + XLF
XLF only

Fig. 5. Speed-up of several benchmarks on RS6000

5.2 Evaluated programs

The programs used for performance evaluation are ARC2D in Perfect Bench-
marks, SWIM, TOMCATV, HYDRO2D, MGRID in SPEC 95fp Benchmarks.
ARC2D is an implicit �nite di�erence code for analyzing uid ow problems and
solves Euler equations. SWIM solves the system of shallow water equations us-
ing �nite di�erence approximations. TOMCATV is a vectorized mesh generation
program. HYDRO2D is a vectorizable Fortran program with double precision
oating-point arithmetics. MGRID is the Multi-grid solver in 3D potential �eld.

5.3 Architecture of IBM RS6000 SP

RS6000 SP 604e High Node used for the evaluation is a SMP server having eight
PowerPC 604e (200 MHz). Each processor has 32 KB L1 instruction and data
caches and 1 MB L2 uni�ed cache. The shared main memory is 1 GB.

XII

5.4 Performance on RS6000 SP 604e High Node

In this evaluation, a coarse grain parallelized program automatically generated
by OSCAR compiler is compiled by IBM XL Fortran compiler version 5.1[35]
and executed on 1 through 8 processors of RS6000 SP 604e High Node. The per-
formance of OSCAR compiler is compared with IBM XL automatic parallelizing
Fortran compiler. In the compilation by a XL Fortran, maximum optimization
option \-qsmp=auto -O3 -qmaxmem=-1 -qhot" is used.

Fig.5(a) shows speed-up ratios for ARC2D by the proposed coarse grain task
parallelization scheme by OSCAR compiler and the automatic loop paralleliza-
tion by XL Fortran compiler. The sequential processing time for ARC2D was
77.5s and parallel processing time by XL Fortran version 5.1 compiler using
8PEs was 60.1s. On the other hand, the execution time of coarse grain parallel
processing using 8 PEs by OSCAR Fortran compiler with XL Fortran compiler
was 23.3s. In other words, OSCAR compiler gave us 3.3 times speed up against
sequential processing time and 2.6 times speed up against XL Fortran compiler
for 8 processors.

Next, Fig.5(b) shows speed-up ratio for SWIM. The sequential execution
time of SWIM was 551s. While the automatic loop parallel processing time
using 8 PEs by XL Fortran needed 112.7s ,coarse grain task parallel processing
by OSCAR Fortran compiler required only 61.1s and gave us 9.0 times speed-up
by the e�ective use of distributed caches.

Fig.5(c) shows speed-up ratio for TOMCATV. The sequential execution time
of TOMCATV was 691s. The parallel processing time using 8 PEs by XL Fortran
was 484s and 1.4 times speed-up. On the other hand, the coarse grain parallel
processing using 8 PEs by OSCAR Fortran compiler was 154s and gave us 4.5
times speed-up against sequential execution time. OSCAR Fortran compiler also
gave us 3.1 times speed up compared with XL Fortran compiler using 8 PEs.

Fig.5(d) shows speed-up in HYDRO2D. The sequential execution time of
Hydro2d was 1036s. While XL Fortran gave us 4.7 times speed-up (221s) using
8 PEs compared with the sequential execution time, OSCAR Fortran compiler
gave us 8.1 times speed-up (128s).

Finally, Fig.5(e) shows speed-up ratio for MGRID. The sequential execution
time of MGRID was 658s. For this application, XL Fortran compiler attains 4.2
times speed-up, or processing time of 157s, using 8 PEs. Also, OSCAR compiler
achieved 6.8 times speed up, or 97.4s.

OSCAR Fortran Compiler gives us scalable speed-up and more than 2 times
speed up for the evaluated benchmark programs compared with XL Fortran
compiler

6 Conclusions

This paper has described performance of coarse grain task parallel processing us-
ing OpenMP backend of OSCAR multigrain parallelizing compiler. The OSCAR
compiler generates a parallelized Fortran program using the OpenMP backend

XIII

from a sequential Fortarn program. Though OSCAR compiler can exploit hi-
erarchical multigrain parallelism, such as coarse grain task level, loop iteration
level and statement level near �ne grain task level, two kinds of parallelism,
namely, the coarse grain task level and loop iteration level parallelism are ex-
amined in this paper considering machine performance parameters for the used
eight processors SMP machine IBM RS6000 604e High Node.

The evaluation shows that OSCAR compiler gives us more then 2 times
speedup compared with IBM XL Fortran compiler version 5.1 for several bench-
mark programs, such as Perfect Benchmarks ARC2D, spec95fp TOMCATV,
SWIM, HYDRO2D, and MGRID.

The authors are planning to evaluate the performance of coarse grain paral-
lel processing on various shared memory multiprocessor systems including SGI
2100, Sun Enterprise 3000 and so on using the developed OpenMP backend.

References

1. M. Wolfe. High Performance Compilers for Parallel Computing. Addison-Wesley,
1996.

2. U. Banerjee. Loop Parallelization. Kluwer Academic Pub., 1994.
3. U. Barnerjee. Dependence Analysis for Supercomputing. Kluwer Pub., 1989.
4. P. Petersen and D. Padua. Static and Dynamic Evaluation of Data Dependence

Analysis. Proc. Int'l conf. on supemputing, Jun. 1993.
5. W. Pugh. The OMEGA Test: A Fast and Practical Integer Programming Algo-

rithm for Dependence Alysis. Proc. Supercomputing'91, 1991.
6. M. R. Haghighat and C. D. Polychronopoulos. Symbolic Analysis for Parallelizing

Compliers. Kluwer Academic Publishers, 1995.
7. P. Tu and D. Padua. Automatic Array Privatization. Proc. 6th Annual Workshop

on Languages and Compilers for Parallel Computing, 1993.
8. M. Wolfe. Optimizing Supercompilers for Supercomputers. MIT Press, 1989.
9. D. Padua and M. Wolfe. Advanced Compiler Optimizations for Supercomputers.

C.ACM, 29(12):1184{1201, Dec. 1986.
10. Polaris. http://polaris.cs.uiuc.edu/polaris/.
11. R. Eigenmann, J. Hoeinger, and D. Padua. On the Automatic Parallelization of

the Perfect Benchmarks. IEEE Trans. on parallel and distributed systems, 9(1),
Jan. 1998.

12. L. Rauchwerger, N. M. Amato, and D. A. Padua. Run-Time Methods for Paralleliz-
ing Partially Parallel Loops. Proceedings of the 9th ACM International Conference
on Supercomputing, Barcelona, Spain, pages 137{146, Jul. 1995.

13. PROMIS. http://www.csrd.uiuc.edu/promis/.
14. C. J. Brownhill, A. Nicolau, S. Novack, and C. D. Polychronopoulos. Achieving

Multi-level Parallelization. Proc. of ISHPC'97, Nov. 1997.
15. Parafrase2. http://www.csrd.uiuc.edu/parafrase2/.
16. M. Girkar and C. Polychronopoulos. Optimization of Data/Control Conditions

in Task Graphs. Proc. 4th Workshop on Languages and Compilers for Parallel
Computing, Aug. 1991.

17. M. W. Hall, B. R. Murphy, S. P. Amarasinghe, S. Liao, , and M. S. Lam. Interpro-
cedural Parallelization Analysis: A Case Study. Proceedings of the 8th International
Workshop on Languages and Compilers for Parallel Computing (LCPC95), Aug.
1995.

18. M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao,
E. Bugnion, and M. S. Lam. Maximizing Multiprocessor Performance with the
SUIF Compiler. IEEE Computer, 1996.

19. S. Amarasinghe, J. Anderson, M. Lam, and C. Tseng. The SUIF Compiler for
Scalable Parallel Machines. Proc. of the 7th SIAM conference on parallel processing
for scienti�c computing, 1995.

XIV

20. M. S. Lam. Locallity Optimizations for Parallel Machines. Third Joint Interna-
tional Conference on Vector and Parallel Processing, Nov. 1994.

21. J. M. Anderson, S. P. Amarasinghe, and M. S. Lam. Data and Computation
Transformations for Multiprocessors. Proceedings of the Fifth ACM SIGPLAN
Symposium on Principles and Practice of Parallel Processing, Jul. 1995.

22. H. Han, G. Rivera, and C.-W. Tseng. Software Support for Improving Locality in
Scienti�c Codes. 8th Workshop on Compilers for Parallel Computers (CPC'2000),
Jan. 2000.

23. G. Rivera and C.-W. Tseng. Locality Optimizations for Multi-Level Caches. Super
Computing '99, Nov. 1999.

24. A. Yoshida, K. Koshizuka, M. Okamoto, and H. Kasahara. A Data-Localization
Scheme among Loops for each Layer in Hierarchical Coarse Grain Parallel Pro-
cessing. Trans. of IPSJ, 40(5), May. 1999.

25. H. K. et al. A Multi-grain Parallelizing Compilation Scheme on OSCAR. Proc.
4th Workshop on Languages and Compilers for Parallel Computing, Aug. 1991.

26. M. Okamoto, K. Aida, M. Miyazawa, H. Honda, and H. Kasahara. A Hierarchical
Macro-dataow Computation Scheme of OSCAR Multi-grain Compiler. Trans.
IPSJ, 35(4):513{521, Apr. 1994.

27. H. Kasahara, M. Okamoto, A. Yoshida, W. Ogata, K. Kimura, G. Matsui, H. Mat-
suzaki, and H.Honda. OSCAR Multi-grain Architecture and Its Evaluation. Proc.
International Workshop on Innovative Architecture for Future Generation High-
Performance Processors and Systems, Oct. 1997.

28. H. Kasahara, H. Honda, M. Iwata, and M. Hirota. A Macro-dataow Compilation
Scheme for Hierarchical Multiprocessor Systems. Proc. Int'l. Conf. on Parallel
Processing, Aug. 1990.

29. H. Honda, M. Iwata, and H. Kasahara. Coarse Grain Parallelism Detection Scheme
of Fortran programs. Trans. IEICE (in Japanese), J73-D-I(12), Dec. 1990.

30. H. Kasahara. Parallel Processing Technology. Corona Publishing, Tokyo (in
Japanese), Jun. 1991.

31. H. Kasahara, H. Honda, and S. Narita. Parallel Processing of Near Fine Grain
Tasks Using Static Scheduling on OSCAR. Proc. IEEE ACM Supercomputing'90,
Nov. 1990.

32. J. E. Moreira and C. D. Polychronopoulos. Autoscheduling in a Shared Memory
Multiprocessor. CSRD Report No.1337, 1994.

33. N. N. Xavier Martorell, Jesus Labarta and E. Ayguade. A Library Implementation
of the Nano-Threads Programing Model. Proc. of the Second International Euro-
Par Conference, vol. 2, 1996.

34. H. Kasahara, S. Narita, and S. Hashimoto. OSCAR's Architecture. Trans. IEICE
(in Japanese), J71-D-I(8), Aug. 1988.

35. IBM. XL Fortran for AIX Language Reference.
36. D. H. Kulkarni, S. Tandri, L. Martin, N. Copty, R. Silvera, X.-M. Tian, X. Xue,

and J. Wang. XL Fortran Compiler for IBM SMP Systems. AIXpert Magazine,
Dec. 1997.

