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Abstract

This paper describes multigrain parallel processing on
a compiler cooperative chip multiprocessor. The multigrain
parallel processing hierarchically exploits multiple grains
of parallelism such as coarse grain task parallelism, loop it-
eration level parallelism and statement level near-fine grain
parallelism. The chip multiprocessor has been designed to
attain high effective performance, cost effectiveness and
high software productivity by supporting the optimizations
of the multigrain parallelizing compiler, which is devel-
oped by Japanese Millennium Project IT21 “Advance Par-
allelizing Compiler”. To achieve full potential of multigrain
parallel processing, the chip multiprocessor integrates sim-
ple single-issue processors having distributed shared data
memory for both optimal use of data locality and scalar
data transfer, local data memory for processor private data,
in addition to centralized shared memory for shared data
among processors. This paper focuses on the scalability
of the chip multiprocessor having up to eight processors
on a chip by exploiting of the multigrain parallelism from
SPECfp95 programs. When microSPARC like the simple
processor core is used under assumption of 90 nm technol-
ogy and 2.8 GHz, the evaluation results show the speedups
for eight processors and four processors reach 7.1 and 3.9,
respectively. Similarly, when 400 MHz is assumed for em-
bedded usage, the speedups reach 7.8 and 4.0, respectively.

1. Introduction

With the improvement of semiconductor technology as
described in the Semiconductor Industry Association’s re-
port [1], current processor designers can use huge amount
of transistors. However, they have faced the problems with
power consumption, memory wall, and performance scala-
bility [2, 3]. Cooperative work between software and hard-
ware is important for overcoming these problems.

When focusing on the performance scalability of a mi-
croprocessor, limitations in the current superscalar architec-
ture are caused by the limitations of Instruction Level Paral-
lelism (ILP) [4]. Design complexity and the differences be-
tween transistor switching speed and wiring delay also com-
plicate performance improvement because of superscalar
architecture [5, 6]. Chip Multiprocessors (CMP) (e.g. Stan-
ford Hydra, MIT RAW, Wisconsin Multiscalar, UT Austin
TRIPS, IBM POWER4) [7, 8, 9, 10, 11] will serve as the
next generation architectures because it can use larger par-
allelism than ILP. In addition, the multiple processor cores
on a CMP can reduce the risk of wiring delay because of the
essentially clustered structure.

Software support is crucial to fully exploit the avail-
ability of parallelism on a CMP. Therefore, several stud-
ies about cooperative work between software and CMP ar-
chitecture have been completed in RAW, Multiscalar and
Hydra [12, 13, 14]. In contrast, multigrain parallel process-
ing has been proposed aiming to boost the effective per-
formance of multiprocessors and to provide high produc-
tivity of application development on multiprocessor plat-
forms [15, 16]. In multigrain parallel processing, a com-
piler exploits three kinds of parallelism from a source pro-
gram such as an ordinary loop iteration level parallelism,
and coarse grain task parallelism among loops and subrou-
tines, in addition to ILP. This parallel processing scheme
is especially efficient for CMP because CMP can treat finer
grains of parallelism than ordinary multiprocessors, and can
naturally treat coarser grains of parallelism than current su-
perscalar processors.

We have developed OSCAR (Optimally SCheduled Ad-
vanced multiprocessoR) Chip Multiprocessor (OSCAR
CMP) which cooperatively works with a multigrain par-
allelizing compiler. The goal of OSCAR CMP is to build
a scalable, highly effective performance and cost effec-
tive computer system for various targets, from embedded
computing like mobile phones, PDAs and game ma-
chines, to high performance computing. The development
of OSCAR CMP includes several projects such as exploit-



ing multigrain parallelism, using data locality, hiding data
transfer overhead, and so on by developing the architec-
ture and the multigrain parallelizing compiler simultane-
ously. This paper especially focuses on the performance
of multigrain parallel processing on OSCAR CMP, con-
sidering the realistic parameters from current semiconduc-
tor technology. The contributions of this paper are that (1)
proposing OSCAR CMP and showing how much scala-
bility can be achieved for SPECfp benchmark programs
using multigrain parallel processing; and, (2) describ-
ing the impact of architectural parameters under multigrain
parallel processing for both, low clock frequency of em-
bedded systems, and high clock frequency of high end
systems.

The rest of this paper is organized as follows: Section 2
lists several previous works. Section 3 provides an overview
of the multigrain parallel processing and generated code im-
age. Section 4 describes an overview of the proposed OS-
CAR CMP and its architectural support for multigrain par-
allel processing. Section 5 presents performance evaluation
using SPECfp benchmark programs.

2. Related Works

As mentioned in Section 1, much research has been con-
ducted on chip multiprocessor architecture [7, 8, 9, 10, 11].

RAW architecture has somewhat similar architectural
approach to OSCAR CMP [8]. RAW architecture integrates
many processing elements (named tiles) having a simple
processor core and local memory. These resources are man-
aged by a parallelizing compiler.

TRIPS also tries to exploit multilevel parallelism, such
as ILP, thread level parallelism (TLP) and data level par-
allelism (DLP) [10]. TRIPS has an array of GridProcessor
and Memory tiles to build both larger dimensions and oper-
ate at high clock speeds. Although the TRIPS project also
aims to exploit various grains of parallelism simultaneously
from one source program like OSCAR CMP, the current
evaluation shows each of ILP, TLP and DLP.

Kasahara and his colleagues originally proposed multi-
grain parallel processing and the OSCAR multiprocessor
system [16, 17]. They also evaluated OSCAR multi-
grain parallelizing compiler using commercial SMP
servers, without near-fine grain parallel processing [18].
In addition, they evaluated OSCAR CMP using OS-
CAR multigrain parallelizing compiler [19, 20]. This paper
differs from these prior works in two ways: (1) multi-
grain parallel processing, including near-fine grain paral-
lel processing, is evaluated on OSCAR CMP using SPEC
benchmark programs, then it is described how to ex-
ploit and use multigrain parallelism from the applica-
tions; and, (2) the architectural parameter of OSCAR

CMP is derived using current semiconductor technol-
ogy.

3. Multigrain Parallel Processing

Multigrain parallelism [16] is defined as the hierarchical
use of three types of parallelism, such as coarse grain paral-
lelism among loops, subroutines and basic blocks [16]; loop
parallelism among loop iterations; and, near-fine grain par-
allelism [17] among statements inside a basic block. This
multigrain parallelism can be automatically exploited by
the OSCAR FORTRAN multigrain parallelizing compiler
as a core compiler of Japanese Millennium Project IT21
“Advanced Parallelizing Compiler Project” [21]. At first,
the compiler exploits coarse grain task parallelism from
a source program. Next, the compiler exploits loop par-
allelism and near-fine grain parallelism from each coarse
grain task hierarchically, as shown in Figure 1. Thus, multi-
grain parallel processing fully exploits parallelism from a
whole source program to obtain scalability.

This section provides an overview of multigrain paral-
lel processing. More detailed descriptions were given in the
prior works by Kasahara and his colleagues [16, 17, 15].
This section also describes the generated code image of
multigrain parallel processing.

3.1. Coarse-grain Task Parallel Processing

The compiler decomposes a source program into three
kinds of coarse grain tasks, namely MacroTasks (MTs),
such as the Block of Pseudo Assignment statements (BPA),
the Repetition Block (RB) and the Subroutine Block (SB)
in coarse grain task parallel processing [16]. A BPA is ba-
sically defined as an ordinary basic block. However, a basic
block is decomposed into several BPAs to extract larger par-
allelism when that basic block includes independent blocks.
If the compiler detects several small basic blocks, the com-
piler may fuse them into a coarser BPA to reduce schedul-
ing overhead. An RB is a Do loop, or a loop generated by
a backward branch. An SB is a subroutine call to which the
in-line expansion cannot be efficiently applied.

After generating the MacroTasks, the compiler analyzes
control flow and data dependency among MacroTasks. The
compiler represents the results of the analysis as a Macro
Flow Graph (MFG) as shown in Figure 2 (a). In this figure,
the nodes represent MacroTasks. The dotted edges repre-
sent control flow. The solid edges represent data dependen-
cies among MacroTasks. The small circles inside the nodes
represent conditional branch statements inside MacroTasks.

Next, the compiler analyzes the Earliest Executable Con-
dition of each MacroTask to find maximum parallelism
from a MFG [16]. The Earliest Executable Condition of
MacroTask i (MTi) represents a condition under which MTi
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Figure 1. An Example of Hierarchically Exploiting Multigrain Parallelism from a Source Program.

may begin its execution earliest. These Earliest Executable
Conditions for each MacroTask are represented by a di-
rected acyclic graph called Macro Task Graph (MTG), as
shown in Figure 2 (b). In the MTG, the nodes also repre-
sent MacroTasks. The small circles inside the nodes rep-
resent conditional branch statements. The solid edges rep-
resent data dependencies. The dotted edges represent ex-
tended control dependencies. The extended control depen-
dency means ordinary control dependency and the condi-
tion under which data dependent predecessors are not ex-
ecuted. A solid arc means that the edges connected by the
arc are in an AND relationship. A dotted arc means that the
edges connected by the arc are in an OR relationship.

If a MacroTask of RB or SB has enough coarse grain
task parallelism inside its body, the body of this MacroTask
can be hierarchically decomposed into sub-MacroTasks, as
shown in Figure 1 (a) and (b). Figure 1 (a) shows a MTG
extracted from a whole source program. The compiler de-
fines this MTG as the first layer MTG. If the compiler de-
tects coarse grain task parallelism inside MT1 2, the com-
piler applies the Earliest Executable Condition analysis to
the body of MT1 2 and generates the MTG, as shown in
Figure 1 (b), as the second layer MTG. In this way, the com-
piler extracts coarse grain task parallelism hierarchically by
applying the Earliest Executable Condition analysis recur-
sively.

Each MacroTask in a MTG is assigned onto a Proces-
sor Group (PG), each of which is a group of processors
virtually defined by the compiler. If runtime uncertainties
exist such as conditional branches among MacroTasks and
fluctuations of MacroTask execution time in the target pro-
gram, MacroTask assignment is decided at runtime by a
dynamic scheduling routine. The compiler generates a dy-
namic scheduling routine exclusively for the target source
code and embeds it into a parallelized object code. In con-
trast, MacroTasks are assigned onto PGs statically in com-
pile time when runtime uncertainties do not exist.
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Figure 2. A Macro Flow Graph (MFG) and A
Macro Task Graph.

3.2. Loop Iteration Level Parallel Processing

MacroTasks are assigned to PGs dynamically or stati-
cally, as mentioned in the previous sub-section. If a Macro-
Task assigned to a PG is a Doall loop, this MacroTask is
processed in the medium grain, or iteration level grain, by
processors inside the PG.

3.3. Near-fine Grain Parallel Processing

If a MacroTask is a BPA or a sequential RB, this Macro-
Task is decomposed into statement level near-fine grain
tasks. These near-fine grain tasks are processed in parallel
by processors inside a PG, as shown in Figure 1 (c) [17]. In
this figure, RB of MT1 3 is a sequential loop and its loop
body is decomposed into near-fine grain tasks. The com-
piler generates a near-fine grain Task Graph for MT1 3.



<< LU  Decomposition  >>

1) u      =  a     / l
2) u      =  a     / l
3) u      =  a     / l
4) l       =  l      * u
5) u      =  a     /  l
6) l       =  a     -  l     *  u

12

24

34
54

45

55

12
24

34

52

45

55 54 45

11

22

33

44

24

<< Forward Substitution >>

<< Backward Substitution >>

7) y      =  b     /  l
8) y      =  b     /  l
9) b      =  b     -  l          

10) y      =  b     /   l
11) y      =  b     /   l
12) b      =  b     -  l      *  y
13) y      =  b     /   l

1
2

5

3

4

5

5

1 11
2 22

5 52

3 33

4 44
5 54 4

5 55

* y2

15) x      =  y        u      *  x
16) x      =  y     -  u      *  x
17) x      =  y     -  u      *  x

14) x      =  y     -  u      *  y4

3

2

1

4

3     -

2

1

45

34

24

12

5

4

4

2

1

0

23

4

5

6

78

9

10 11

12

13

14

15 16

17

18

19 19 19

19

19 19 1919 19

10

10

10 10

8

10

10

10

Task No.

Task
processing
time

Data
transfer
time t ij

t = 0

on the same PE

t = 9

on different PEs

ij

ij

if T
i
 and Tj are 

if T
i
 and Tj are 

(a) Near-Fine Grain Tasks (b) Generated Near-Fine Grain Task Graph

Figure 3. An Example of Near-Fine Grain
Tasks and Near-Fine Grain Task Graph.

Figure 3 (a) shows an example of a 17-statement
BPA, which solves a random sparse matrix using the
Crout method. The compiler analyzes data dependen-
cies among statements and generates a task graph that rep-
resents data dependencies among near-fine grain tasks. Fig-
ure 3 (b) shows an example of a task graph for the BPA in
Figure 3 (a). In Figure 3 (b), a number inside a node cir-
cle represents a task number, i, and a number beside
the node represents a task-processing time on a proces-
sor, ti. An edge directed from node Ni toward Nj represents
a partially ordered constraint caused by the data depen-
dence that the task Ti precedes task Tj . Each edge has
a variable weight to represent the data transfer time be-
tween tasks. If Ti and Tj are assigned onto different
processors, the weight tij is considered the data trans-
fer time between task Ti and Tj .

These near-fine grain tasks are assigned onto pro-
cessors statically since there exist only data dependen-
cies among tasks inside a BPA. The compiler uses four
heuristic scheduling algorithms, such as CP/DT/MISF,
CP/ETF/MISF, ETF/CP and DT/CP [17], and chooses the
shortest scheduled result automatically.

After scheduling, the compiler generates a machine code
of near-fine grain tasks for each processor. The compiler
also embeds machine code for data transfer and synchro-
nization into the required places using statically scheduled
results.

3.4. Generated Code Image for Multigrain Paral-
lel Processing

This section gives a generated code image for multi-
grain parallel processing using Figure 4. Figure 4 shows
a code image of the MTG in Figure 1, using eight pro-

cessors in a chip. As shown in this figure, each processor
has its own program code to avoid complexity and over-
head of hierarchical parallel task control, such as thread dis-
patching. At the beginning of program execution, each pro-
cessor starts its own code. Then, processors communicate
with each other for data transfer, synchronization, task con-
trol, and so on, using the compiler’s appropriately embed-
ded code.

Figure 1 (a) shows that the first layer MTG does not
have conditional branches and this MTG has only “2” of
parallelism. Therefore, eight processors are grouped into
two PGs, each of which has four processors. MT1 1 and
MT1 2 are assigned onto processor group0 (PG0) statically.
Similarly, MT1 3 is assigned onto processor group1 (PG1).
In addition, the compiler places code for sending a syn-
chronization flag immediately after MT1 1 on Processor0
(MT Sync S(1)), and places code for receiving a synchro-
nization flag immediately before MT1 3 on Processor4 to
Processor7 to maintain the synchronization between MT1 1
and MT1 3.

The second layer MTG inside MT1 2 is processed in
parallel on PG0. Distributed dynamic scheduling is applied
to this MTG as shown in Figure 4. In distributed dynamic
scheduling, each processor group has its own scheduler
code to schedule its next MacroTask. Each processor in-
side PG0 has all the codes for the MacroTasks inside MT1 2
to prepare runtime behavior of that MTG. Scheduling in-
formation, such as the Earliest Executable Condition and
ready task queue, is shared by all processor groups that pro-
cess the MTG. When a MacroTask is finished, a scheduler
code updates scheduling information exclusively to other
processors immediately after that MacroTask, and assigns
the next ready MacroTask to its own processor. Then the
processor transfers control to assigned MacroTask and exe-
cutes it. In addition to distributed dynamic scheduling, the
compiler also uses centralized dynamic scheduling, which
means that one processor is occupied by a scheduler code
and no MacroTask is executed on it. Therefore, only a
scheduler processor maintains scheduling information.

As to the number of processor groups for MT1 2, PG0
is further divided into two PGs, such as processor group0 0
(PG0 0) and processor group0 1 (PG0 1), each of which
has two processors inside it. Each MT inside MT1 2 is
processed in parallel by loop parallel processing or near-
fine grain parallel processing on these two processors in-
side PG0 0 or PG0 1.

The loop body of MT1 3 is processed by near-fine grain
parallel processing using four processors inside PG1. Each
processor (Processor4 to Processor7) has its own code ac-
cording to the scheduled results of the MT1 3’s body. Code
for near-fine grain data transfer and synchronization are also
placed among near-fine grain task code as described in Sec-
tion 3.3. In Figure 4, Ti means near-fine grain task code,
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Figure 4. A Generated Code Image for Multi-
grain Parallel Processing.

Send(j) means near-fine grain data transfer code, Recv(j)
means data receive code, Sync S(k) means sending near-
fine grain synchronization flag code, and Sync R(k) means
receiving synchronization flag code. In this example, Pro-
cessor4 sends data generated by the near-fine grain task T1
at Send(1), and then sends the synchronization flag, which
means T1 is finished, at Sync S(1). In contrast, Processor6
waits for synchronization flags from Processor4 and Pro-
cessor5 at Sync R(1) and Sync R(2), respectively, and then
receive data transfered by these processors at Recv(1) and
Recv(2), respectively. Finally, a BPA is finished with a bar-
rier synchronization code.

4. Architectural Support for Multigrain Par-
allel Processing

Proposal of the OSCAR CMP and its architectural sup-
port for multigrain parallel processing, especially coarse
grain task parallel processing and near-fine grain parallel
processing, are described here. One of the most impor-
tant goals of developing the OSCAR CMP is building a
scalable computer system by cooperatively working with a
multigrain parallelizing compiler. Therefore, OSCAR CMP
heavily depends on the characteristics of multigrain paral-
lel processing. In other words, OSCAR CMP must deal with
various sizes of task granularity and communication granu-
larity for coarse grain task parallelism, loop parallelism and
near-fine grain parallelism. The principal design concept of
OSCAR CMP is multigrain parallelizing compiler control-
lable simple architecture.

PE0 PE1 PE2 PE3

Interconnection Network

DSM

LPM

CHIP

CPU

Bus Interface

DTU

CSM

LDM

Figure 5. An Overview of OSCAR Chip Multi-
processor.

4.1. OSCAR Chip Multiprocessor Architecture

Figure 5 shows an overview of the OSCAR CMP. OS-
CAR CMP consists of multiple processor elements (PE) and
an interconnection network using multiple buses or a cross-
bar network. On-chip centralized shared memory (CSM) is
also assumed in this paper. Each PE has a simple single-
issue CPU core, local program memory (LPM), local data
memory (LDM), distributed shared memory (DSM) having
two ports, and a data transfer unit (DTU) [19]. Similar ar-
chitecture, which has local memory or distributed shared
memory and simple core, is also proposed from commer-
cial area [22].

LPM stores program code generated by the compiler for
each PE. DSM is a dual port memory. DSM provides low-
latency data transfer and low-overhead synchronization for
coarse grain task parallel processing and near-fine grain par-
allel processing. LDM stores PE private data. LDM can
have twice larger memory size than DSM since LDM only
needs a single port.

Note that OSCAR CMP in this paper does not have any
cache memory system. Data consistency of DSM is kept by
the compiler explicitly.

4.2. Architectural Support for Coarse Grain Task
Parallel Processing

As described in Section 3, OSCAR multigrain paral-
lelizing compiler logically forms a different configuration
of processor groups (PGs) for each program or even each
portion of a program considering the best task granularity
and parallelism of a source program. Multiple PEs in each
processor group communicate with each other, especially,
when a MacroTask executed on that PE is processed in near-
fine grain parallel processing as shown in Figure 4. In such
a situation, network boundary caused by an in-flat intercon-
nection network is inefficient for processor grouping by the



compiler. OSCAR CMP adopts a flat interconnection net-
work such as a crossbar or multiple buses to support such
flexible processor grouping by software.

The compiler uses static and dynamic scheduling de-
pending on a MTG. When the compiler chooses dynamic
scheduling, shared data among MacroTasks are assigned to
CSM, since tasks that access the shared data are assigned
to processors at runtime. In addition, when distributed dy-
namic scheduling is applied, scheduling information such
as a ready task queue and Earliest Executable Conditions
are allocated on CSM.

For both static and dynamic scheduling, data commu-
nication by a few words among the PGs are required. In
static scheduling, a one-word synchronization flag is sent
from a predecessor MacroTask to successor MacroTasks
when these dependent MacroTasks are assigned to differ-
ent processors as shown in Figure 4. In dynamic scheduling,
scheduling signals such as task starting signals, task finish-
ing signals and conditional branch signals are exchanged
among processors. These scheduling signals are also one
word. These short-length communications are processed via
DSM with a little latency.

Shared array data among RBs and loops should be
passed through DSM or LDM for data locality optimiza-
tion. The compiler decomposed loops and array data so
that the decomposed data can be passed through DSM
or LDM among the decomposed loops [23]. Further-
more, overlapped array data transfer behind MacroTask
execution has been proposed [24]. DTU is used for load-
ing array data from CSM, storing array data to CSM and
data transfer among PGs with high throughput.

4.3. Architectural Support for Near-Fine Grain
Parallel Processing

Since near-fine grain tasks consist of a few to several tens
of machine instructions, it is important that each proces-
sor core precisely processes near fine-grain tasks according
to the statically scheduled results in near-fine grain parallel
processing. Wrong scheduling caused by the unpredictable
runtime behavior of processor cores prevents OSCAR CMP
from efficient parallel processing. This is one of the reasons
that OSCAR CMP uses simple single-issue processor cores
since the simple core allows a compiler to predict its run-
time behavior.

As to data transfer and synchronization in near fine grain
parallel processing, scalar data and synchronization flags
come and go across PEs as shown in Figure 4. These data
transfer and synchronizations are processed via DSM, sim-
ilar to scheduling information in coarse grain task parallel
processing. Busy waiting loops for synchronization flags at
a local DSM area can be performed inside the PE because
sender PEs transfer flags to remote PE’s DSM directly. This

busy wait loops does not degrade the bandwidth of the in-
terconnection network.

Private data detected at compile time using static
scheduling information can be located on LDM.

5. Evaluation

This section presents a performance evaluation of multi-
grain parallel processing on OSCAR CMP. For performance
evaluation, two configurations are used under assumptions
of low frequency in the embedded system and high fre-
quency in the high-end system.

5.1. Evaluation Environment

To evaluate the scalability of cooperative work between
OSCAR CMP and OSCAR multigrain parallelizing com-
piler, the numbers of processors, or PEs, inside a chip are
1, 2, 4 and 8. The size of LDM, DSM and on-chip CSM
are 128KByte, 32KByte and 3MByte, respectively. Mem-
ory access latency for each memory is shown in Table 1, in
which two parameter sets of memory parameters are eval-
uated considering both, the low frequency for the embed-
ded system and the high frequency for the high-end system.
The parameter set of 400 MHz is assumed to have an ag-
gressive memory parameter because this low memory la-
tency makes the availability of multigrain parallelism clear.
These parameters are estimated using CACTI 3.0 [25] un-
der the assumption of 90nm technology. As to the intercon-
nection network and CSM structure, triple buses and four-
banked CSM are assumed. A processor core inside a PE is a
simple single-issue core like microSPARC [26] although in-
struction set architecture is SPARC V9 [27].

For this evaluation, seven FORTRAN77 programs from
SPECfp95 are used. Data size of each program is reduced,
as described in Appendix A, to allocate all data on on-
chip CSM and to reduce long evaluation time by the pre-
cise architecture simulator. These programs are compiled by
the OSCAR multigrain parallelizing compiler using SPARC
back-end and processed on the clock accurate OSCAR
CMP architecture simulator. This paper especially focuses
on evaluating multigrain parallel processing on OSCAR
CMP. Data locality optimization and data transfer optimiza-
tion are out of the scope of this paper even though these are
two of the most important topics. Therefore, almost all data
are allocated on CSM, and DTU is not used. However, near-
fine grain data transfer and synchronization are performed
via DSM. Data transfers for dynamic scheduling are also
performed via DSM.



Frequency [MHz] 400 2800
LDM (128KB) [clocks] 1 2
DSM (32KB, 2 Ports) [clocks] 1 2
CSM (3MB) [clocks] 2 8
Network [clocks] 2 10

Table 1. Memory Access Latencies for Perfor-
mance Evaluation
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and Four CSM Banks.

5.2. Evaluation Results of Rich Loop Parallelism
Applications

Figure 6 and Figure 7 show the results of the perfor-
mance evaluation under the assumptions of 400 MHz and
2.8 GHz clock frequency, respectively. Each bar in these
figures shows speedup against sequential execution time for
2, 4 and 8 processors, or PEs, respectively. Figure 6 shows
that OSCAR CMP achieves good scalability under the as-
sumption of 400 MHz for SWIM, TOMCATV and MGRID,
which have rich Doall parallelism. Figure 7 also shows good
scalability under the assumption of 2.8 GHz.However, their
speedups are lower than that of 400 MHz because of rela-
tively higher CSM and remote DSM access latency for 2.8
GHz.

As a result, for these rich Doall parallelism applications,
OSCAR CMP achieves scalable performance improvement
efficiently for both 400 MHz and 2.8 GHz. Furthermore,
there is an opportunity of performance improvement by data
locality optimization and data transfer optimization with ef-
ficient use of LDM, DSM and DTU, especially in the case
of 2.8 GHz.

The following sub-sections present the evaluation results
of TURB3D, APPLU and APSI, respectively.
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Figure 7. Speedup of SPEC fp programs un-
der the Assumption of 2.8 GHz, Triple Buses
and Four CSM Banks.

5.3. Evaluation Results of TURB3D

Subroutine “TURB3D” consumes most execution time
of program TURB3D. This subroutine has several coarse
grain loops each of which calls subroutine “XYFFT” and
“ZFFT”. Each of these loops can be processed by loop iter-
ation level parallel processing. In addition, coarse grain task
parallelism among these loops can be exploited after apply-
ing loop distribution.

Figure 8 shows the speedups of TURB3D, both of results
using Doall parallelism only, namely “w/o Coarse Grain”,
and Multigrain parallelism, namely “w/ Coarse Grain”. This
figure shows both parallel processing give as almost same
speedups until four PEs. However, multigrain parallel pro-
cessing gives us 1.24 times better performance for 400MHz
and 1.13 times for 2.8GHz when eight PEs are used. This
result shows multigrain parallel processing can exploit par-
allelism that conventional loop parallel processing cannot
use.

On the other hand, TURB3D also suffers from frequent
memory access in the case of 2.8GHz. This result also
shows that data locality optimization and data transfer opti-
mization is required.

As a result, OSCAR CMP having eight PEs gives us
7.2 times speedup for 400MHz and 5.1 times speedup for
2.8GHz.

5.4. Evaluation Results of APPLU

APPLU is known for an application in which Doacross
parallel processing is effective [28]. However, multigrain
parallel processing is applied to this application, other than
Doacross parallel processing. Each subroutine “BLTS” and
“BUTS”, which prevents from simple Doall parallel pro-
cessing, has several Doall loops inside an outermost triply
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Figure 8. The Speedup Ratio of TURB3D
with or without Coarse Grain Task Parallel
Processing. Each Bar shows the Speedup
against Sequential Execution Time of “w/
Coarse Grain”.

nested loops. These Doall loops are unrolled and restruc-
tured into one large BPA because they have only small fixed
number of iterations. The compiler can exploit near fine
grain parallelism from subroutine “BLTS” and “BUTS”. Of
course, Loop parallelism is also exploited from other Doall
loops. This optimization is easier than Doacross parallel
processing that requires both complex analysis and difficult
restructuring.

Figure 9 shows the speedups of APPLU including re-
sults that use only Doall parallelism, namely “w/o Near Fine
Grain”. When eight PEs are used, multigrain parallel pro-
cessing including near-fine grain parallelism and loop par-
allelism gives us 1.65 times performance improvement for
400 MHz and 1.63 times performance improvement for 2.8
GHz against Doall only parallel processing.

As a result, OSCAR CMP having eight PEs gives us 4.8
times speedup for 400 MHz and 4.6 times speedup for 2.8
GHz. This is a good example of flexibility and scalability of
the multigrain parallel processing.

5.5. Evaluation Results of APSI

APSI is a difficult program for parallel processing. Al-
though this program has many Doall loops, many of these
loops have small number of iterations. For instance, 34.1%
of sequential execution time is consumed for such small
loops whose number of iterations is less than or equal to
eight. In addition, there is little near-fine grain parallelism
in this application. It seems enough that OSCAR CMP
achieves 2.5 times speedup for 400 MHz and 2.2 times for
2.8 GHz, respectively.
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Figure 9. The Speedup Ratio of APPLU with
or without Near Fine Grain Parallel Process-
ing. Each Bar shows the Speedup against
Sequential Execution Time of “w/ Near Fine
Grain”.

6. Conclusions

This paper proposes compiler cooperative OSCAR CMP
and describes multigrain parallel processing on OSCAR
CMP. The goal of OSCAR CMP is building a scalable, high
effective performance and cost effective computer system
for various targets from embedded system to high perfor-
mance system by cooperative work between software and
hardware. This paper especially focuses on the scalabil-
ity of OSCAR CMP using multigrain parallel processing.
When 90 nm technology is assumed, the performance eval-
uation using a simple single-issue processor core shows that
OSCAR CMP, having eight processors, achieves 2.5 – 7.8
times speedup against sequential execution under the as-
sumption of 400 MHz for embedded usage, and 2.2 – 7.1
times speedup under the assumption of 2.8 GHz for high
performance usage. OSCAR CMP achieves such a good
scalability by efficiently exploiting not only each type of
grain of multigrain parallelism, such as coarse grain task
parallelism, loop level parallelism and near-fine grain state-
ment level parallelism, but also hierarchically combining
these types of parallelism. The evaluation results also show
that there is an opportunity of more performance improve-
ment by data locality optimization and data transfer opti-
mization using local memory and a data transfer unit, espe-
cially in the case of 2.8 GHz.

In addition to data locality optimization and data trans-
fer optimization, performance evaluation using multimedia
applications and integer applications are the next important
issues. Comparing OSCAR CMP with other memory archi-
tectures, such as typical shared cache CMP architectures, is
also an important topic.
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A. Evaluated Programs

Evaluated programs and their modified points are de-
scribed below.

SWIM This program is 102.swim. This is a shallow water
modeling program. In this evaluation, array size “M”
and “N” in the “test” data set is changed from 512 to
192.

TOMCATV This program is 101.tomcatv. This is a mesh-
generation program. In this evaluation, array size “N”
in the “test” data set is changed from 257 to 193. The
number of loop iterations “ITACT” is also changed
from 500 to 10. This program is measured only main
loop to reduce the influence of file I/O.

MGRID This program is 107.mgrid. This is a multi-grid
solver in 3D potential field program. In this evalua-
tion, parameter “LMI” and “NIT” in the “test” data set
are changed from 7 to 5, and 40 to 4, respectively.

TURB3D This program is 125.turb3d. This program sim-
ulates isotropic, homogeneous turbulence in a cube. In
this evaluation, the parameter “NSTEPS” in the “train”
data set is changed from 11 to 6, “NAVG” is changed
from 10 to 5, “M1” is changed from 6 to 3, respec-
tively. In addition, “IX”, “IY” and “IZ” are changed
from 64 to 16.

APPLU This program is 110.applu. This is a
parabolic/elliptic partial differential equations pro-
gram. In this evaluation, the number of loop itera-
tions “ITMAX” in the “train” data set is changed from
50 to 5.

SU2COR This program is 103.su2cor. This is a Monte
Carlo simulation program. In this evaluation, param-
eter “LSIZE(4)” in the “test” data set is changed from
(8, 8, 8, 16) to (4, 4, 4, 8), respectively.

APSI This program is 141.apsi. This program solves prob-
lems regarding temperature, wind, velocity and distri-
bution of pollutants. In this evaluation, the parameter
“NTIME” in the “train” data set is changed from 720
to 3.


