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Abstract

This paper proposes a data-localization compilation scheme
for macro-dataflow computation, in which coarse-grain tasks
such as loops, subroutines and basic blocks in a Fortran pro-

gram are automatically processed in parallel on a multipro-

cessor system. The data-localization scheme reduces data
transfer overhead for passing shared data among coarse-
gl ain tasks composed of Doall loops and sequential loops by
using local memory effectively. In this scheme, a compiler

partitions coarse-grain tasks, or loops, having data depen-

dence among them into multiple groups by a loop aligned

decomposition so that data transfer among groups can be

minimum, generates dynamic scheduling routine with par-

tial static task assignment to assign decomposed tasks in
a group to the same processor at run-time, and generates

parallel machine code to pass shared data inside the group
through local memory. A compiler has been implemented for
an actual multiprocessor system OSCAR having centralized
shared memory and distributed shared memory in addition
to local memory on each processor. Performance evaluation
OIL OSCAR shows that macro-dataflow computation with

the proposed data-localization scheme can reduce the exe-

cu tion time by 10% to 20% average compared with ordinary

macro-dataflow computation using centralized shared mem-

ory.

1 Introduction

Most Fortran parailelizing compilers for multiprocessor sys-
tems have been using loop parallelization techniques, such as
Doall and Doacross[l, 2]. Currently, many types of Do-loops
can be parallelized with support of strong data dependence

analysis t echniques[3, 4, 5, 6, 7]. There still exist, however,
sequential loops which cannot be parallelized efficiently be-

cause of complex loop-carried data dependence and condi-
tional branches to the outside loops. Also, parallelism out-

side Do-loops, for example, coarse grain parallelism among
loops, subroutines and basic blocks, and (near) fine grain
pa.rallelism[8] inside a basic block[9] or a sequential loop,
has not been effectively exploited by automatic compilers
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for multiprocessor systems.
Therefore, in order to improve the effective perfor-

mance of multiprocessor systems, it is important to ex-
ploit the coarse grain parallelism[lO] and also the (near)

fine grain parallelism inside a sequential loops and a ba~
sic block[8], in addition to the medium grain parallelism
among loop iterations exploited by the conventionzd loop
parallelization. The coarse grain parallel processing on
a multiprocessor system is also called the macro-dataflow
computation[ll, 12, 10, 13, 14, 15]. The macro-dataflow

commutation can be efficiently combined with the looD con-

currentization and the near fine grain parallel processing

hierarchically[16, 17, 15].

In parallel processing schemes like macro-dataflow where

coarse grain tasks (macrotasks) are dynamically scheduled

to processors (P Es) “or processor clusters (PCs), shared data
among macrotaaks are generally allocated onto centralized

shared memory (or ordinary common memory) and data
transfers among macrotasks are performed via centralized
shared memory. However, data transfer via centralized
shared memory causes large overhead. Therefore, in order
to reduce data transfer overhead, it is necessary that a com-
piler automatically decomposes data and computation and

allocates them to local memory on each processor so that

data transfer overhead can be minimum.

To this end, Tu and Padua[18], Eigenman[19], Li[20] pro-

posed Array Privatization method, in which temporal array
variables in a loop are allocated to 10CSJ memory to reduce
data transfer overhead. However, it can be applied only
inside a loop.

Another popular approach for data decomposition and
assignment on distributed memory multiprocessor systems
is that user specifies distribution of data by using extended

Fortran such as High Performance Fortran (HPF)[21] and
Fortran D[22]. However, it is difficult for ordinary users to

optimize both parallelism and data locality.
Considering this fact, recently, many researchers have

been studying on automatic data partitioning. Li and
Chen[23] showed how explicit communication can be syn-

thesized and how communication costs are estimated by an-
alyzing reference patterns in the source program. Ramanu-

jam and Sadayappan[24] focused on partitioning a nested
Doall loop so that the partitioned loops can be executed

without communication overhead. Chen and Sheu[25] also
presented communication-free partitions for a nested loop.
However, these methods can be applied only to a nested
loop. Meanwhile, Gupta and Banerjee[26] proposed auto-

matic data decomposition for a whole program. Anderson
and Lam[27] proposed automatic data and computation de-

61



composition among loops when a compiler can allocate data
and computation to processor using a hear transformation
matrix. However, these schemes cannot be applied to a pro-
cessing scheme in which computation and data are allocated

dynamically, such as macro-dataflow computation.
Considering the above fact, this paper proposes a data-

localization scheme to transfer data via local memory among

macrotasks composed of Doall and sequential loops in

macro-datafiow computation. The proposed scheme decom-

poses loops considering data dependence among iterations

over different loops into multiple groups by loop aligntd de-
composition method. Then the compiler generates dynamic
scheduling routine with partial static task assignment to
schedule the decomposed loops inside a group which causes
large data transfer to the same processor. Next the com-
piler generates parallel machine codes in which shared data
among the decomposed loops scheduled to the same proces-
sor are transferred via local memory. A compiler has been
implemented and its performance is evaluated on an actual

multiprocessor system OSCAR(Optimally SCheduled Ad-

vanced multiprocessor) [8].
Section 2 describes the macro-dataflow computation for

a Fortran program. Section 3 proposes data-localization

scheme among macrotasks composed of DoaU and sequen-

tial loops. Section 4 evaluates performance of the proposed

data-localization scheme on OSCAR.

2 Macro-Dataflow Computation

The macro-dataflow compilation scheme [10, 13, 17, 14, 28,
29, 30, 15, 31] mainly consists of the following four parts.

2.1 Generation of macrotasks (MTs)

In the macro-dataflow computation, a Fortran program is
decomposed into three kinds of macrota.sks (Wfk), such as
a Block of Pseudo Assignment statements (BPA), a Repe-
tition Block (R13) and a Subroutine Block (SB).

A BPA is composed of a basic block or multiple basic
blocks. A BPA composed of multiple basic blocks is gener-
ated by fusing small basic blocks. To the contrary, BPAs
are also defined by decomposing a basic block into several

blocks if a basic block has independent data dependence
graphs inside. A RB is a Do-loop or a loop generated by

a backward branch, namely, an outermost natural loop[9].

RBs are restructured by the proposed loop alignai &compo-

sition met hod mentioned in section 3.1. As to subroutines,
subroutines to which the in-line expansion technique cannot

efficiently be applied, are defined aa SBS.

2.2 Generation of macro flow graph (MFG)

Before detection of parallelism among macrotasks, control
flow and data flow among macrotasks are analyzed and are
represented by Macro-Flow- Gmph (MFG)[1O, 13, 17, 14] as

shown in Figure 1. MFG is generally a directed acyclic graph
since RBs contain all back edges inside them. In MFG, a
node represents a macrotasks, a small circle inside a node

shows a conditional branch, and a solid edge and a dotted

edge represent data flow and control flow respectively.

2.3 Generation of macrotask graph (MTG)

The MFG explicitly represents the control flow and data
flow among macrotasks though it does not show any par-
allelism among macrotasks. Generally, the control depen-
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Figure 1: MFG of a sample program

dence graph, or the program dependence graph[32], rep-
resents maximum parallelism if there are not data depen-
dence among macrot asks[33]. In practice, there exist, how-
ever, data dependence among macrotasks. Therefore, in

order to effectively extract parallelism among macrotasks
from a macro-flow-graph, the control dependence and the

data dependence should be analyzed together.
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Figure 2: MTG of a sample program

In this paper, an earliest-executable-condition [10, 13, 17,

15] of each macrotssk is used to find the maximum paral-
lelism among macrotasks considering control dependence

and data dependence. The earliest-executable-condition
of a macrotssk i (&f’I’i ) is a condition on which &fT, may
begin its execution earliest after data and control depen-
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dences are satisfied. For example, an earliest-executable-
condition of iMT6 in Figure 1 is “14Ts completes execution

C~R MT2 branches to MT4°. Girkar and Polychronopou-

lcE [34] modified the original earliest executable condition

analysis[l O, 13, 17] assuming a conditional branch inside a

rnacrotask is executed in the end of the macrotask[3].

The earliest-executable-conditions of macrotasks are rep-
resented by a directed acyclic graph called Macro Task-Graph
(MTG) [10, 13, 17, 14] as shown in Figure 2.

2.4 Generation of dynamic scheduling routine

Next, the compiler generates a dynamic scheduling rou-

tine to schedule macrotasks onto processors (PEs) or pro-

cessor clusters (PCs) at run-time. Dynamic scheduling is

adopted to cope with runtime uncertainties, such as condi-

tional branches among macrotasks and a variation of macro-

task execution time. As a dynamic scheduling algorithm,

Dynamic-CP algorithm[17], which uses scheduling priority

based on estimation of longest path length from each node
tc~ the exit node on MTG, is applied.

3 Data-Localization among Macrotasks Composed
of Doall and Sequential Loops

This section proposes a data-localization scheme to reduce

di~ta transfer overhead among macrotasks composed of Doall
and sequential loops. In this paper, data-localization means

tcl decompose multiple loops, or array data, and to assign
thlem to processors so that shared data among the macro-

tasks can be transferred through local memory on the pro-

cessors.

This compilation method consists of the following three
steps: loop aligned decomposition which decompose loop in-

dex and arrays to minimize data transfer among processors,
genemtion of dynamic scheduling routine with partial static

task assignment to assign a set of decomposed loops among

which large data transfer may occur onto the same proces-

sor, and genemtion of parallel machine-wale to transfer data
via local memory among the decomposed loops assigned

onto the same processor.

3.1 Loop aligned decomposition

In the definition of RB in section 2.1, a Doall loop is assigned
to a processor as a macrotask. To avoid this situation and
to exploit parallelism of a Doall loop, the compiler decom-
poses the Doall loop into n small Doall loops (or macro-
tasks), where n is a number or multiple numbers of proces-

sors. These decomposed small Doall loops are executed on

processors in parallel.

However, in a set of Doall and sequential loops which are

connected by data dependence edge in MTG, if Doall loops

are decomposed and executed on processors and sequential
loops are not decomposed and are executed on a single pro-

cessor, then a large amount of data should be transferred
among processors.

Therefore, this section proposes loop aligned decomposi-
tion considering sequential loops, whkh decomposes sequen-
tial loops as well as Doall loops so that data can be trans-
ferred via local memory (LM) among decomposed Doall and
sequential loops.

3.1.1 Detection of target-loop-group for loop
aligned decomposition

First, we find a set of RBs or Target-Loop- Grvup (TLG) to

which loop aligned decomposition is applied. The TLG is

composed of RBs satisfying the following conditions.
(i)RBs are connected by a single data dependence edge

related with array variables on MTG. Here, a data depen-
dence edge from small BPA which initializes scalar variables
used in RB may exist.

(ii) Each RB (Outermost loop) is a Doall loop, a reduc-
tion loop, or a sequential loop with loop carried data depen-
dence. Also, it is assumed each RB has been normalized to

have stride 1.
(iii) Array subscript in RB is expressed by a linear func-

tion of an index variable.
In the above conditions, it is assumed that suitable loop

restructuring techniques[2, 35] such as loop interchange,

loop fusion, loop distribution and so on have been applied

to each RB before this TLG detection phase. A set of RBI,

RBz and RB3 in Figure 3(a) is an example of TLG.

— : data dependence

C RBl(Doall)
D:/=~;Ol

v=EN DO

(a)Partlel MTG (TLG)

E
-1 1 k* +1 ‘(RB1)

11
I (RB2)

I (RB3)

(b)irJ~lp data dependence

Figure 3: Target-loop-group (TLG) with a sequential loop

3.1.2 Interloop data dependence analysis in target-
Ioop-group

For each TLG composed of “m” macrotasks or RB, (1 ~. i s

m), the compiler analyzes data dependence among iterations
of RB, (1 ~ i < m). For example, in case of the TLG in

Figure 3(a), k-th iteration of RB3 (e.g. 34th iteration in

Figure 4) is data dependent on (k - 1)-th (e.g. 33rd) and
k-th (e.g. 34th) iterations of RBz by array B ss shown in

Figure 3(b). Also, k-th (e.g. 34th in Figure 4) iteration of
RBz is data dependent on k-th (e.g. 34th) and (k+ 1)-th

(e.g. 35th) iteration of RB1 by array A.
Here we call this kind of data dependence Direct lnter-

Loop Data dependence and represent it as DiT.lLD(RBi,

RBJ, k), which means the loop indices of iterations in RB,

on which k-th iteration in RBj is data dependent. Each
elements of DirlLD(RB:, RBj, k) is represented by linear

function of k. In the example of Figure 3(a), DirILD

(RB2, RBs, k) = {k – 1, k}, and DirILD(RBl, RBz, k) =
{k, k +1} as shown in Figure 3(b).

Next, the compiler analyzes index ranges of iter-

ations in RBi (1 ~ i s m – 1) on which k-

th iteration of RB~ (exit node in TLG) is directly
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or indirectly data dependent. Then, the compiler

represents the result of analysis by direct and indi-
rect InterLoop Data dependence expressed by ILD(RB,,

RB~, k). Note that loop carried data dependence inside
sequential loop (RB) is not considered while this analysis

is performed. Each element of .lL.D(RBi, R.Bm, k) is also
represented by a set oflinear function of k.

The algorithm to analyze 1-LD(RB,, RBm, k) is shown

in the following. Here, StMDt DepRB(RBi ) represents a set

of succeeding RBs in TLG each of which is data dependent
on RB,.

ILD(R13~ , RBm, k) = {k}.

fOT i := m–ltoldo

ILD(RB, , RB~ , k) = u
RB3cSucDtDepRB( RB; )

( u )DiTILD(RB,, RBj, t) .

tclL~(I?Bj,R~~,k)

In an example in Figure 3(a), .lLD(RBi, RB3, k)
(1 < < 3) are analyzed as follows;

ILD(RB3 , RaB3 , k) = {k}, ILD(RB,, RB3, k) =

ut& IL D(RBs. RBs.kl DirILD(RB2, RB3, t) = {k – 1, k}, and

ILD(RB1, RB3;’kj = (&L~(RB,,R~,,k) DirILD(RBl ,

RB2, t) = {k -1, k, k + 1 }. Namely, k-th (e.g.34th in Figure
4) iteration of RB~ is data de~endent on (k - 1)-th and k-th

(~.g. 33rd and 34th) iterati~ns of RBz and & (k - 1)-th
through (k + 1)-th (e.g. 33rd through 34th) iterations of

RB1 .
In the calculation of DirILD and ILD, lower-bound and

upper-bound of elements in DirILD and ILD are used in-
stead of a set of elements to reduce calculation time. Also, if

several iterations of RB, exist between ILD(RB,, RB~, k)
and IL D(RB,, RBm, k + 1), those iterations are joined into

ILD(RBi, RBm, k).

(R%)

(RB2)

(RB~)

3.1.3 Calculation of group-converted-index-range in
target-loop-group

Next, the compiler calculates Group- Converted-Indez-Range

(GCIR), which represents index range of array data used (or
defined) in all RBs inside the TLG as a loop index range of

RBm .

First, the compiler converts loop index range of RBi (1 ~

i s m), or IR(RB!), into loop index range of the RBm, or

Converted-Index-Range (C’IR(RB,)). Namely, CIR(RBi) is

determined as a set of indices to satisfy the following equa-
tion.

IR(RBi) = u ILD(RBi , RBm, t).

tGCI~RB, )

Secondly, the compiler calculates GCIR as follows;

GC’IR = U CIR(RB,).

I<i<nz

For example, in case of Figure 3(a), CIR(RB1) =

CIR(RB2) = CIR(RB3) = [2 : 100] as shown in Fig-

ure 4. Note that [z : y] denotes the range of z-th index

(lower-bound) through y-th index (upper-bound). Therefore
GCIR = CIR(RBI) U CIR(RBZ) U CIR(RBS) = [2 : 100].

3.1.4 Decomposition of RBs in target-loop-group

By using GCIR and ILD(RB,, RBm, k), the compiler de-
composes each RB. (1 ~ i ~ m) into Localizable-Regions
(LRs) and Commonly-Accessed-Regions (CARS) as follows.

LR is a partial set of iterations in RBi on which only a suc-
ceeding decomposed RB is data dependent when RBs are

decomposed. CAR is a set of iterations in RB, on which

plural succeeding decomposed RBs are commonly data de-
pendent. Note that CAR is not generated if there are not

iterations in RB, on which several succeeding decomposed
RBs are commonly data dependent.

Concretely, first, the compiler evenly decomposes GCIR

into n partial ranges, or DGCIRP ( 1 ~ p ~ n), where n is
a number or a multiple number of processors. For example,
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when RBs in Figure 3(a) are executed on 3 processors and
== 3, GCIR(= ~2 : 100]) is decomposed into DGC’IRl (=

& : 34]), DGC’IR (= [35 : 67]) and DGCIR3(= [68 : 100])

as shown in Figure 4.

Secondly, the compiler generates CARS, or RB~’p+l >
(1. < p < n-l), for each RBi(l < i < m). Loop index range

of RB,!PsP+ 1>, or ‘p’p+’>), is calculated as follows.IR(RBi

LR(RB,<P,P+l>) = ( u IIJD(RBi ,RB~ ,t)

tEDGCIRp )

n( u )ILD(RB;,JU?m,t).
tEDGCIRp+l

Thirdly, the compiler generates LRs, or RB~(l < p < n),

for each RB~ (1 < i ~ m). The compiler calculates loop

index range of RB~, or IR(RB~) as follows.

ZR(RB:) = ( u ILD(RBi , RBm , t)

t~DGCIRP )

-IR(RB~-l’p>) - IR(RB;P’P+l>)

wlhere compiler initializes lR(RBfO’l>) = 0,

‘n’’’+)’) = 0 in advance.IR(RBi

Fourthly, the compiler examines whether loop in-
dex range of each decomposed RB (e.g. I12(RB~) or

Iiz(RBi ‘p’p+’>)) is included in loop index range of RB:. If

IR(RB~) or IR(RB~p’Ptl > ) (the decomposed RB for RBi)

includes iterations out side IR(RBi ), these iterations are re-
moved from the index range of decomposed RB.

In an example in Figure 4, aa to generation of CAR,
iterations of RB1 (or RBz ) on which both a set of iterations
of a partial RB~ (whose loop index range is DGCIRl ) and
a set of iterations of the other partial RB~ (whose 100P

index range is DGCIR2 ) are commonly data dependent are

defined as RB~l’2> (or RB$’’2>) respectively. Next, as

LRs, RB~, RB~ and RB~ are generated by using DGCIR1,

and RB~, RB~ and RB~ are generated by using DGCIR2.
Lc,op index ranges of each decomposed RB are shown in

Figure 4.

3.1.5 Generation of data-localization-group

After loop aligned decomposition is applied, the compiler de-

fines a set of LRs, among which large data transfer are re-
quired, as a Data-Localization-Group (DLG) where array

data are passed through local memory. At this time, a CAR

is fused into an adjacent LR to reduce dynamic scheduling

overhead. Figure 5 shows DLGs corresponding to Figure 4.
As shown later, these macrotasdrs inside DLG are sched-

uled to the same processor at run-time by dynamic schedul-
ing; routine with partial static task assignment. Moreover,

among the macrotasks inside DLG assigned to the same
processor, shared data are transferred via LM ss described

later.

— : Data dependence
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- : Data transfer from LM to CSM
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Figure 5: Data-localization-group (DLG) and dat a tran
among macrotasks

.sfers

3.2 Generation of dynamic scheduling routine with
partial static task assignment

As mentioned before, in order to transfer shared data among

rnacrotasks via local memory, macrotasks inside DLG are
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scheduled to the same processor at run-time. However,

in ordhary Dynamic-CP method[15][31] which is used as

dynamic scheduling algorithm in macro-dataflow computa-
tion, macrotasks in DLG are not always scheduled to the

same processor. Therefore, the proposed dynamic schedul-

ing method uses a partial static task assignment scheme to
schedule macrotaaks in DLG to the same processor at run-
time. In the following, the proposed dynamic scheduling

using Dynamic-CP algorithm with partial static task assign-
ment is explained more concretely.

The execution order for macrotasks in each DLG is
decided by data dependence among them uniquely. So,

after entrance macrot ask (kfT( ~,entramc~) ) in a DLGd

is scheduled to a processor PEP at run-time, sched-
uler assigns the other macrotasks (~T(d,,~~~tra~~~J )

in the DLGd to the same PEP. To realize this

procedure, when the compiler generates a dynamic
scheduling routine, the compiler specifies succeeding

~T(d,i#e~tra~cc) should be scheduled to the same proces-
sor with MT(d,entrance). In this approach, to avoid load

unbalance among processors, dynamic scheduler assigns
MT(d,entrance) in DLG to a processor having smallest load.

Here, load of processor is estimated considering processing
time for both a running macrotask on the processor and

macrot asks in D LG to be scheduled to the processor.
In current implementation, it takes about 90 clocks to

schedule a macrotask to a processor by using the proposed
dynamic scheduling routine with partial static task assign-
ment. Namely, the overhead of dynamic scheduling with
partial static task assignment is very small.

3.3 Generation of Data-transfer code via local
memory in data-localization-group

First, the compiler estimates data transfer time via local
memory (L M), or tfocalize,and data transfer time via cen-

tralized shared memory (CSM), or t&~M,for each array vari-
ables z which are used or defined in loops inside DLG. For

array x satisfying tfocalize< t&sM, the compiler generates
data transfer code via LM as follows. Meanwhile, for array z
not satisfying $ocal,=e < t&~M, the compiler generates data
transfer code via CSM.

Next, for each array to be locahzed among loops in a
DLG, the compiler generates store or load instructions to

LM in these loops. Also, the compiler generates machine
code to transfer data on CSM to LM before these data are

used by processor. For instance, when data-locahzation is
applied to arrays A and B in the TLG shown in Figure 5,

data transfer code from CSM to LM is generated as shown

by light shaded part of each macrotask inside DLG.

Also, if data on LM in DLG are used by another DLG,
the compiler inserts data transfer code from LM to CSM.
For example, the compiler generates data transfer code as
shown by dark shaded part of each macrotssk inside DLG

in Figure 5.

4 Performance Evaluation on OSCAR

This section describes performance evaluation of the pro-
posed data-localization scheme on 0SCAR[17, 8, 36].

4.1 OSCAR’s architecture

OSCAR was developed in 1987 by the authors and Fuji Fa-

com Corp.. It is a multiprocessor system having centralized

and distributed shared memories in addition to local pro-
gram and data memories as shown in Figure 6. Its proces-
sor elements (PEs) and a Control and 1/0 processors are

uniformly connected to centralized shared memory (CSM)

through three buses. Each PE has a custom-made 32 bit

RISC processor, distributed shared memory (DSM) and the
local memories (LM). On OSCAR, it takes 4 clocks to store
(or load) one word data to CSM or DSM on the other PE,

and 1 clock to store (or load) to LM or DSM inside PE.

HCSM2 SM

(CP) , (CP)

‘ w

(CP) (CP]
,. ..

PE6 PE6 PEs PE9 PE1o PEII PE15 PEII

* 5PE CLUSTER (SPCI) — SPC2 — SPC3 —

- 8PE PROCESSOR CLUSTER (LPC1) — LPC2 _

Figure 6: OSCAR’s architecture

4.2 Performance evaluation using Spline interpola-
tion program

In this performance evaluation, a Fortran program for Spline
Interpolation, having 9 Doall loops, 2 sequential loops with

loop carried data dependence and 3 basic blocks is used.
Figure 7 shows macrotask-graph (MTG) for this program.

Table 1 shows the execution result of this program on OS-
CAR.

Table 1: Performance evaluation using Spline Interpolation
program

recessing c emes time~ ph speed up
[ins] vs. 1 PE

1 Sequentml processing 632 1/1.00

3 Deal 1 mocessm~ 284 1/2.23
3 Macro~dat aflow- 246 ij2.57
3 Macro-dataflow with data- 187 1/3.38

localization

6 Deal 1 processing 218 1/2.90
6 Macro-dat aflow 188 1/3.36
6 Macro-dataflow with data- 152 1/4.16

localization

Conventional Doall processing reduces execution time
from 632ms for 1 PE to 284ms (1/2.23) for 3 PEs and to
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Figure 7: MTG of a program for Spline Interpolation

218ms (1/2.90) for 6 PEs. On the other hand, ordinary

macro-dataflow computation without data-localization re-

duces execution time to 246ms (1/2.57) for 3 PEs and to
138ms (1/3.36) for 6 PEs because parallelism among sequen-

tial loops and the other macrotasks can be exploited.
Furthermore, when the proposed data-localization

method is applied to the target-loop-group on MTG in Fig-

ure 7, execution time on 3 PEs is reduced to 187ms (1/3.38)
fc,r 3 PEs and to 152ms (1/4.16) for 6 PEs. In other
words, speedup of 23.9~0 for 3 PEs and 19.170 for 6 PEs

are obtained by the data-localization compared with ordi-
nary macro-dataflow computation.

4,3 Performance evaluation using CFD program

Next, we evaluate the proposed scheme by using a

Computational-Fluid-Dy namics (CFD) program based on

IAF(Implicit Approximate Factorization) algorithm. CFD

program is a 1400-line Fortran program. In this evaluation,

a part of the program having 7 loops is used.

Table 2: Performance evaluation using CFD program

PE Processing Schemes time speed up
[s] vs. 1 PE

1 Sequentml processing 4.452 1/1.00

2 Macro-dat aflow 2.231 1/1.99

I 2 Macro-dataflow with data- 1.868 1/2.36
loctilzation I

4 Macro-dat aflo w 1.176 1/3.78

4 Macro-dataflow with data- 0.987 1/4.51

locfllzation

6 M acro-dat aflo w 0.815 1/5.46

I 6 / Macro-dataflow with data- I 0.721 ] 1’/6.17 ]
localization

The execution time of this program on OSCAR is in-

dicated in Table 2. The sequential execution time of this
program on 1 PE is 4.452[s]. In this case, all array data

are initially allocated onto centralized shared memory be-
cause array data size is larger than local memory size on 1

PE. Ordinary macro-dataflow computation reduces process-
ing time to 2.231s (1/1.99) for 2 PEs, to 1.176s (1/3.78) for

4 PEs, to 0.815s (1/5.46) for 6 PEs. On the other hand,

macro-dataflow computation with data-localization reduces

to 1.868s (1/2.36) for 2 PEs, to 0.987s (1/4.51) for 4 PEs,

to 0.721 (1/6.17) for 6 PEs. In other words, speedup of

16.2~o for 2 PEs, 16.OyO for 4 PEs and 11.5% for 6 PEs are
obtained by the data-localization compared with ordinary

macro-dataflow computation.
In the above evaluation, OSCAR needs only 4 clocks to

access CSM and 1 clock to access LM. However, since ratio
of CSM access time to LM access time is large on multipro-

cessor system available in the market, the proposed data-
localization scheme may be more effective on these machines.

Currently, the authors are rewriting th6 prototype com-
piler to a practical version which can compile large scale ap-

plication programs and generate parallelized program writ-
ten in VPP Fortran, KSR Fortran, MPI etc. in addition to

OSCAR parallel machine code.

5 Conclusions

This paper proposes the data-localization scheme for macro-
dataflow computation on multiprocessor system having
shared memory and local memory. The data-localization

scheme is composed of loop aligned decomposition, genera-
tion of dynamic scheduling routine with partiaJ static task

assignment, and generation of machine-code to pass shared
data among loops through local memory.

Performance evaluations on OSCAR showed that macro-
dataflow computation with data-localization could reduce

execution time by 23.970 for Spline Interpolation program
and by 16.2% for a partial program of Computational Fluid
Dynamics program compared with ordinary macro-dataflow
computation without data-localization. From these results,

effectiveness of the proposed data-localization scheme using
partial static task assignment was confirmed.

Currently, the authors are researching on combination

of data-localization technique and data pre-loading and

data post-storing technique to hide data transfer overhead
by overlapping computation and data transfer for macro-

dataflow computation.
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