
Parallelizing Compilation Scheme for Reduction

of Power Consumption of Chip Multiprocessors

Jun Shirako1, Naoto Oshiyama1, Yasutaka Wada1, Hiroaki Shikano2,
Keiji Kimura1,2, and Hironori Kasahara1,2

1 Dept. of Computer Science,
2 Advanced Chip Multiprocessor Research Institute

Waseda University 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan
{shirako,oshiyama,yasutaka,shikano,kimura,kasahara}@oscar.elec.waseda.ac.jp

Abstract. With the advance of semiconductor technology, chip multi-
processor architectures, or multi core processor architectures have at-
tracted much attention to achieve low power consumption, high effec-
tive performance, good cost performance and short hardware/software
development period. To this end, parallelizing compilers for chip multi-
processors are expected that allow us to parallelize program effectively
and to control the voltage and clock frequency of processors and storages
carefully inside an application program. This paper proposes paralleliz-
ing compilation scheme with power reduction control under the multi-
grain parallel processing environment that controls Voltage/Frequency
and power supply of each processor core on a chip. In the evaluation, the
OSCAR compiler with the proposed scheme achieves 60.7 percent energy
reduction for SPEC CFP95 applu without performance degradation on
4 processors, and 85.6 percent energy reduction for SPEC CFP95 tom-
catv with real-time deadline constraint on 4 processors, and 86.7 percent
energy reduction for SPEC CFP95 swim with the deadline constraint on
4 processors.

1 Introduction

With the increase of transistors integrated onto a chip, a processor architecture
which can realize higher effective performance and lower energy consumption
has been required. To this end, chip multiprocessors, or multi core, architec-
tures are getting much attention as future promising architectures. For example,
Fujitsu FR-V[1], ARM MPCore[2], Cell[3] which has been developed by IBM,
SONY and Toshiba, and Intel Xeon dual-core[4] are well known multi core. In
order to achieve efficient parallel processing on chip multiprocessors, cache and
local memory optimization to cope with memory wall problems and minimiza-
tion of data transfer among processors using DMAC (Direct Memory Access
Controller) are necessary, in addition to the extraction of parallelism from an
application program. There have been a lot of researches to extract parallelism
for chip multiprocessors in the areas of loop parallelizing compilers [5–7]. How-
ever, the loop parallelization techniques are almost matured and new generation

of parallelization techniques like multi-grain parallelization are required to attain
further speedup. There are a few compilers trying to exploit multiple levels of
parallelism, for example, NANOS compiler[8] extracts the multi-level parallelism
including the coarse grain task parallelism by using extended OpenMP API and
OSCAR multigrain parallelizing compiler [9–11] extracts coarse grain task paral-
lelism among loops, subroutines and basic blocks and near fine grain parallelism
among statements inside a basic block, in addition to the loop parallelism. Also,
OSCAR compiler realizes the automatic determination of parallelism of each
part of a program and the number of required processors to process the program
part efficiently with the global cache memory optimization over different loops.

This required number of processors determination scheme determines the
suitable number of processors to execute each part of a program and stops the
unnecessary processors to minimize processing overhead and reduce power con-
sumption by shutting off power supply for idle processors.

For the power saving techniques, various methods have been proposed. Adap-
tive Processing[12] estimates the workload of computing resources using counters
for cache misses and instruction queues and powers off unnecessary resources.
Online Methods for Voltage and Frequency Control [13] settles on the fitting
voltage and frequency for each domain of processors using instruction issue
queue occupancies as feedback signals. As the compiler algorithm for CPU en-
ergy reduction, compiler-directed DVS(dynamic voltage scaling)[14] is known.
This method gets the relations between frequency and execution time for each
part of a program by profiling. It solves minimization problem of total energy
consumption and determines the suitable frequency for each part.

This paper proposes a static compiler control scheme of power reduction for
a chip multiprocessor without profiling, which realizes

– power supply cutoff for unnecessary processors
– voltage/frequency(V/F) control of each task or of each processor in an ap-

plication program under the constraints of the minimum time execution or
the satisfaction of real-time deadline

2 Multigrain parallel processing

The proposed power reduction scheme is mainly used with the coarse grain task
parallelization in the multigrain parallel processing. This section describes the
overview of the coarse grain task parallel processing.

2.1 Generation of macro-tasks [9–11][15, 16]

In multigrain parallelization, a program is decomposed into three kinds of coarse
grain tasks, or macro-tasks, such as block of pseudo assignment statements(BPA)
repetition block(RB), subroutine block(SB)[11]. Macro-tasks can be hierarchi-
cally defined inside each un-parallelizable repetition block, or sequential loop,
and a subroutine block as shown in Figure 1. Repeating the macro-task gener-
ation hierarchically, the source program is decomposed into the nested macro-
tasks as in Figure 1.

BPA

RB

SB

Program

Near fine grain parallelism

Loop level parallelism

Coarse grain parallelism

Coarse grain parallelism

all system 1st layer 2nd layer 3rd layer

Near fine grain parallelism
in loop body

BPA
RB
SB

BPA
RB
SB

BPA
RB
SB

BPA
RB
SB

BPA
RB
SB

BPA
RB
SB

Fig. 1. Hierarchical Macro Task Definition

2.2 Extracting coarse grain task parallelism

After generation of macro-tasks, the data dependency and the control flow among
macro-tasks are analyzed in each nested layer, and hierarchical macro flow
graphs(MFG) representing control flow and data dependencies among macro-
tasks are generated [9–11]. Then, to extract coarse grain task parallelism among
macro-tasks, Earliest Executable Condition analysis [9–11] which analyzes con-
trol dependencies and data dependencies among macro-tasks simultaneously is
applied to each Macro flow graph. Earliest Executable Conditions are the con-
ditions on which macro-task may begin its execution earliest. By this analysis, a
macro-task graph(MTG)[9–11] is generated for each macro flow graph. Macro-
task graph represents coarse grain parallelism among macro-tasks.

2.3 Hierarchical Processor grouping

To execute hierarchical macro-task graphs efficiently, the compiler groups pro-
cessors hierarchically. This grouping of processor elements(PEs) into Processor
Groups(PGs) is performed logically, and macro-tasks are assigned to processor
groups in each layer.

Figure 2 shows an example of a hierarchical processor groups. For execution
of a macro-task graph in the 1st nest level, or 1st layer, the 8 processors are
grouped into 2 processor groups each of which has 4 processor elements. This
is represented as (2PGs, 4PEs). The macro-task graph in the 1st nest level
is processed by the 2PGs. For each macro-task graph in the 2nd nest level, 4
processors are available. In the Figure 2, the grouping of (4PGs, 1PE) is chosen
for the left PG and (2PGs, 2PEs) is chosen for the right PG.

2.4 Automatic determination scheme of parallelizing layer

In order to improve the performance of multigrain parallel processing, it is neces-
sary to schedule the tasks on the macro-task graph with the extracted parallelism
to processors the grouped processor layer. OSCAR compiler with the automatic
parallelized layer determination scheme [15, 17] estimates the parallelism of each

8PE

PG0(4PE) PG1(4PE)

PG1-0(2PE) PG1-1(2PE)2nd layer

1st layer

PG0-0 PG0-1 PG0-2 PG0-3

0th layer

Fig. 2. Hierarchical definition of processor groups and processor elements

macro-task graph and determine the suitable (PGs, PEs) grouping. This scheme
determines the suitable number of processors executing each macro-task, con-
sidering trade-off between parallelization and scheduling and data transfer over-
head. Therefore, OSCAR compiler doesn’t assign tasks to the excessive proces-
sors to reduce parallel processing overhead.

2.5 Macro-Task Scheduling

In the coarse grain task parallel processing, a macro-task in the macro-task
graph is assigned to a processor group. At this time, static scheduling or dynamic
scheduling is chosen for each macro-task graph.

If a macro-task graph has only data dependencies and is deterministic, the
static scheduling is selected. In this case, the compiler schedules macro-tasks to
processer groups. The static scheduling is effective since it can minimize data
transfer and synchronization overhead without runtime scheduling overhead.

If a macro-task graph is un-deterministic by conditional branches among
coarse grain tasks, the dynamic scheduling is selected to handle the runtime
uncertainties. The dynamic scheduling routines are generated by the compiler
and inserted into a parallelized program code to minimize scheduling overhead.

This paper proposes the power reduction static scheduling scheme for the
determinable macro-task graphs.

In the following sections, MT represents macro-task, MTG is macro-task
graph, PG is processor group, PE is processor element, BPA is block of pseudo
assignment statements, RB is repetition block and SB is subroutine block.

3 Compiler control power reduction scheme

The multigrain parallel processing can take full advantage of multi level paral-
lelism in a program. However, there isn’t always enough parallelism in all part of
a program for available resources. In such a case, shutting off the power supply
to the idle processors, to which tasks are not assigned, can reduce power con-
sumption. Also, execution at lower voltage and frequency may reduce the total
energy consumption in real time processing with the deadline constraint. The
proposed scheme realizes the following two modes of power reduction. The first
is the fastest execution mode that doesn’t apply the power reduction scheme to
the critical path of a program to guarantee the fastest processing speed. The
second is real-time processing mode with deadline constraint that minimizes the
total energy consumption within the given deadline.

SCMm

OSCAR Chip Multiprocessor for Multigrain Parallel Processing

CSM / L2 Cache

PE0 PE1
PEn

Intra-chip connection network (Multiple Buses, Crossbar, etc)

DSM

LDM/
D-cacheAdjustable

Pre-fetch

I-Cache

SCM0

Inter-chip connection network (Crossbar, Buses, Multistage network, etc)

CSMj

CSM

I/O

SCMk

Network Interface

CPU

DTC

I/O

DevicesI/O

Devices

Fig. 3. OSCAR architecture(Chip multiprocessor)

3.1 Target model for the proposed power reduction scheme

In this paper, it is supposed that the target multiprocessors have the following
functions with the hardware supports like OSCAR chip multiprocessor shown
in Figure 3. The OSCAR(Optimally Scheduled Advanced Multiprocessor) archi-
tecture has been proposed to support optimization of multigrain parallelizing
compiler [18, 9, 10], especially static and dynamic task scheduling [19, 18, 20]. In
the OSCAR architecture, simple processor cores having local and/or distributed
shared memory both of which are double mapped to the global address space so
that can be accessed by remote processor cores DTC(Data Transfer Controller),
or DMAC, are connected by interconnection network like multiple busses or
cross bar switches to control shared memory(CSM) [19, 18, 20, 21]. In addition
to the traditional OSCAR architecture, in this paper, the following power control
functions are supported.

– The frequency for each processor can be changed in several levels separately.
– The voltage can be changed with the frequency.
– Each processor can be powered on and off individually.

There are a lot of approaches for voltage and frequency(V/F) control. The pro-
posed power reduction scheme assumes frequency changes discretely, and the
optimal voltage is fixed for each frequency. Table 1 shows an example of the
combinations of voltage, dynamic energy and static power at each frequency,
which supposes FULL is 400MHz, MID is 200MHz and LOW is 100MHz at
90nm technology. For the table, dynamic energy rate for each frequency is the
rate of energy consumption to the energy consumption at FULL. The power
supply is shut off completely at OFF, then the static power becomes 0. These
parameters and the number of frequency states can be changed, according to

Table 1. The rate of frequency, voltage, dynamic energy and static power

state FULL MID LOW OFF

frequency 1 1/2 1/4 0

voltage 1 0.87 0.71 0

dynamic energy 1 3/4 1/2 0

static power 1 1 1 0

architectures and technology. This scheme also considers the state transition
overhead that is given for each state.

3.2 Target MTG for the proposed control scheme

OSCAR compiler selects dynamic scheduling or static scheduling for each MTG,
as to whether there is runtime uncertainty like conditional branches in the
MTG. The proposed scheme can be only applied to static scheduled MTGs.
However, separating the parts without branches from dynamic scheduled MTG,
this scheme is applied for the static scheduling parts of MTGs. In the static
scheduling at the compile time, execution cost and consumed energy of each
MT is estimated. The cost and energy at each frequency level like “FULL” and
“MID” can be calculated using the previously prepared parameter table for each
target multiprocessor of each instruction cost embedded in the compiler.

3.3 Deadline constraints for target MTG

The proposed scheme determines suitable voltage and frequency for each MT
on a MTG based on the result of static task assignment. In other words, the
proposed power reduction scheme is applied for the static task schedule like
Figure 4 generated by static task scheduling algorithms to minimize processing
time including data transfer overhead, such as CP/DT/MISF, DT/CP, ETF/CP,
which have been used for a long time in OSCAR compiler. Figure 4 shows MTs
1, 2 and 5 are assigned to PG0, MTs 3 and 6 are assigned to PG1, MTs 4, 7 and
8 are assigned to PG2 by the static scheduling algorithms. The best schedule is
chosen among different schedules generated by the different heuristic scheduling
algorithms. In Figure 4, edges among tasks show data dependence.

First, the following is defined for MTi, in order to estimate the execution
time of the target MTG to which the proposed scheme is applied.

Ti : execution time of MTi after V/F control
Tstarti

: start time of MTi

Tfinishi
: finish time of MTi

At the beginning of the proposed scheme, Ti is not yet fixed. The start time of
the target MTG is set to 0. If MTi is the first macro-task executed by a PG
and has no data dependent predecessor. Tstarti

and Tfinishi
are represented as

shown below.

PG0 PG1 PG2
MT1

MT2 MT3
MT4

MT5 MT6
MT7

MT8

time Given Dead Line

Margin

Phase 1

Phase 2

Phase 3

Fig. 4. static scheduled MTG

Tstarti
= 0

Tfinishi
= Tstarti

+ Ti = Ti

For instance, the MT1 is the entry node of MTG, so it is the first and has no
data dependent predecessor. Then, Tstart1 = 0, Tfinish1

= T1. In other case, the
previous macro-task which is assigned to the same PG as MTi is represented as
MTj. The data dependent predecessors of MTi are defined as {MTk, MTl, ...}.
Then, MTi starts when MTj, MTk, MTl, ... finish.

Tstarti
= max(Tfinishj

, Tfinishk
, Tfinishl

, ...)
Tfinishi

= Tstarti
+ Ti

In Figure 4, MT2 and MT3 start execution immediately after the time MT1 is
finished. So, the start time is represented as Tstart2 = Tstart3 = Tfinish1

= T1, the
finish time is Tfinish2

= Tstart2 +T2 = T1 +T2, Tfinish3
= Tstart3 +T3 = T1 +T3.

MT6 is started after MT2 and MT3, then Tstart6 = max(Tfinish2
, Tfinish3

) =
max(T2 + T1, T3 + T1). In addition, the common term of the arguments in max
may be put out of max. Then, Tstart6 = max(T2+T1, T3+T1) = max(T2, T3)+T1.
As the same way, the finish time of MT8 which is the exit node is represented
as Tfinish8

= T1 + T8 + max(T2 + T5, T6 + max(T2, T3), T7 + max(T3, T4))
The exit node is generally represented by

Tfinishexit
= Tm + Tn + ... + max1(...) + max2(...) + ...

The start time of the entry node is 0, therefore Tfinishexit
expresses the execution

time of the target MTG, defined as TMTG. The given deadline for the target
MTG is defined as TMTG deadline. Then, the next condition should be satisfied.

TMTG ≤ TMTG deadline

The proposed scheme determines suitable clock frequency for MTi to satisfy the
condition.

3.4 Voltage / frequency control

This paragraph describes how to determine the voltage and frequency to ex-
ecute each MT using next conditions. The execution time of MTi is Ti, the
execution time of target MTG is TMTG, the real-time deadline of the terget
MTG is TMTG deadline, then

PG0 PG1 PG2
MT1

MT2 MT3

MID
MT4

MT5

MID MT6 MT7

MT8
time

PG3
idle (1) idle (1)

idle (2) idle (2)

idle (3)

Fig. 5. Result of V/F control

TMTG = Tm + Tn + ... + max1 + max2 + ... - - - (a)
TMTG ≤ TMTG deadline - - - (b)

For sake of simplicity, the MTs corresponding to each term of the expression (a)
such as Tm, Tn, ..., max1, max2, ... are called Phase. Each term represents the
different part of TMTG. Therefore, the different Phase is not executed in parallel
on any account as shown in Figure 4. The following parameters for Phasei at
frequency Fn are defined.

Tschedi
(Fn) : scheduling length at Fn

Energyi(Fn) : energy consumption at Fn

Tschedi
(Fn) represents the execution time when the whole Phasei is processed

at Fn. Tschedi
(FULL) is the minimum value of the term in the expression (a).

Energyi(Fn) expresses the total energy consumption as Phasei is excuted at
Fn.

Here, it is considered to change frequency from Fn to Fm. The scheduling
length is increased from Tschedi

(Fn) to Tschedi
(Fm). The energy is decreased

from Energyi(Fn) to Energyi(Fm). Using these values, Gaini(Fm) is defined as

Gaini(Fm) = −Energyi(Fm)−Energyi(Fn)
Tschedi

(Fm)−Tschedi
(Fn)

Gaini(Fm) represents reduction rate of energy on scheduling length when Fn is
changed into Fm. Therefore, if the increases of scheduling length are same, the
more energy consumption can be prevented by prioritizing Phasei with larger
Gaini(Fm).

Next, to estimate the margin of the target MTG, the minimum value of TMTG

is calculated. This is equal to the summation of Tschedi
(FULL). Then, using this

minimum value and TMTG deadline, the margin TMTG margin is defined as
TMTG margin = TMTG deadline −

∑
Tschedi

(FULL)
As the target MTG must finish in minimum execution time, TMTG margin = 0,
then each Phase has to be executed at FULL. When TMTG margin > 0, the
proposed scheme turns down the voltage and frequency of each Phase, according
to Gaini(Fm). If Phase has a single MT, the frequency of MT is the same as the
Phase. If Phase includes some MTs and corresponds to max term, the proposed
scheme also defines Phases for each argument of max, then determines clock
frequency to execute these Phases. The algorithm to determine frequency for
each Phase is described below. The initial value of each frequency is FULL.

Table 2. Power and frequency transition overhead

dynamic power 220[mW]

static power 2.2[mW]

overhead(FULL - MID - LOW) 0.1[ms]

overhead({FULL, MID, LOW} - OFF) 0.2[ms]

Step.1 Determining each frequency of Phase
Step.1.1 selecting target Phase
This step considers only a Phase whose frequency isn’t fixed. Fn is represented
as current frequency and Fm is defined as one step lower than Fn, then Phasei

having the maximum Gaini(Fm) is selected as the target Phase. goto Step.1.2
Step.1.2 determining effectiveness for target Phase
For target Phase, the conditions to change the frequency from Fn to Fm is as
follows.

1. Including the frequency transition overhead, the target Phase can finish at
Fm within the TMTG margin.

2. The energy at Fm with overhead is lower than the energy at Fn.

If both conditions are satisfied,
then the frequency of target Phase is changed to Fm. goto Step.1.3
else the frequency of target Phase is confirmed as Fn. goto Step.1.4

Step.1.3 updating the margin of MTG
The required time to execute the target Phase at Fm is calculated, then the
required time is subtracted from TMTG margin. If Fm is the lowest frequency,
the frequency of target Phase is confirmed as Fm. goto Step.1.4
Step.1.4 determining exit
The conditions to exit are as follows.

1. The frequency of all Phase is confirmed.
2. TMTG margin is 0.

If either of these conditions is satisfied,
then goto Step.2
else goto Step.1.1

The remained margin is given Phasei which satisfies next conditions, if TMTG margin

is not 0 at the end.

– The frequency is not the lowest.
– Gaini(Fm) is the maximum.

Step.2 V/F control within each Phase
In the proposed scheme, the following algorithm is applied to each Phase.

DOALL6

LOOP10

DOALL14

LOW

OFF

LOOP21

LOOP11

DOALL15

LOW

OFF

LOOP20

OFF

OFF
LOOP12

DOALL16

LOW
OFF

LOOP19

OFF

DOALL9

LOW

OFF
LOOP13

DOALL17

LOOP18

OFF

PE0 PE1 PE2 PE3

clock

0

200M

400M

600M

DOALL8

MID
DOALL8

MID

Fig. 6. V/F control of applu(4proc.)

Step.2.1 classifying Phases
If Phase includes only a single MT,

then the frequency of the MT is the same as Phase. exit
else goto Step.2.2

Step.2.2 Voltage/frequency control of max term
Phase includes some MTs and corresponds to max term, the proposed scheme
calculates the executing time of this Phase at the already determined frequency
in Step.1. Then, the calculated execution time is defined as Tmaxi deadline.

maxi = max(argi 1, argi 2, ...) ≤ Tmaxi deadline

argi j = Ti j m + Ti j n + ... + maxi j 1 + maxi j 2 + ...

Therefore, argi j should meet the next condition.
Ti j m + Ti j n... + maxi j 1 + maxi j 2... ≤ Tmaxi deadline - - - (c)

The MTs corresponding to each term in the expression (c) are also considered
as Phase, then Step.1 is applied to determine the frequency of each Phase. At
this time, the execution time of each argi j at FULL frequency is calculated.
Then each argi j is applied Step.1 in descending order of the execution time,
or ascending order of the margin. Some Phases in different args may include the
same macro-tasks in common. However, once the frequency of a macro-task has
been determined, the frequency isn’t changed.

Applying Step.1 and Step.2 recursively, the suitable frequency of all MTs
are determined.

3.5 Power supply control

This paragraph explains power supply control to reduce unnecessary energy
consumption including static leak current by idle processors. The cases where
the idle time occurs in a MTG are,

1. before MT with data dependency is executed,
2. after all MTs in a PG are finished,
3. the idle time created by the determination scheme of parallelizing layer,

which is described in paragraph 2.4.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

1 2 4 1 2 4 1 2 4
tomcatv swim applu

benchmark

sp
e
e

d
u

p
 r

a
ti

o
 w/o Saving

w Proposed Saving

Fig. 7. Speedup in fastest execution mode

The gray parts of Figure 5 are the idle in each case. Here, the PG3 is the
processor group determined as unnecessary. In the idle time which meets the
next conditions, the power of the processor is turned off.

– The idle time is longer than the frequency transition overhead.
– The energy becomes lower by power-off.

3.6 Applying power reduction scheme to inner MTG

If a MTi includes a MTGi inside, it may be more effective to control each
MTi j in MTGi than to process the whole MTi at the same clock frequency.
Therefore, the deadline for MTGi is defined as TMTGi deadline, which is given
by Ti. Then, MTGi is applied the proposed power reduction control described
in paragraph 3.4 and 3.5. Comparing both case to execute the whole MTi at the
same frequency and case to apply the power reduction control to MTGi, the
more effective one is selected.

4 Performance evaluation

This section describes the performance of OSCAR multigrain parallelizing com-
piler with the proposed power reduction scheme. The evaluation are performed
by using the static scheduler in the compiler. For this evaluation, the parameters
for frequencies, voltages, dynamic energies, and static powers shown in Table 1
are used. In this paper, only energy for processors was evaluated. The state tran-
sition overhead with frequency, dynamic and static power is shown in Table 2.
The dynamic power at FULL frequency is measured by using Wattch[22]. Co-
operative Voltage Scaling[23] is vebered to determine the parameters like the
transition overhead, attribute of voltage/frequency and dynamic power at MID
and LOW frequency. Application programs, such as applu, tomcatv and swim
from SPEC95 CFP, are used in the evaluation. For applu, inline expansion and
loop aligned decomposition for the data localization[16] are applied. Also, the
main loop in applu is divided into the static part without conditional branch
and the dynamic part with branches, in order to apply the proposed scheme.

0
20
40
60
80

100
120
140
160
180
200

1 2 4 1 2 4 1 2 4
tomcatv swim applu

benchmark

e
n
e
rg

y
(J

)

w/o Saving

w Proposed Saving

Fig. 8. Energy in fastest execution mode

4.1 Performance in the fastest execution mode

Figure 7 shows the speedup ratio of each program, and Figure 8 shows the total
energy consumption for 1, 2 and 4 processors in the fastest execution mode.
In these graphs, the left bars represent the results of OSCAR compiler with-
out the proposed power reduction scheme, the right bars show the results of
OSCAR compiler using the proposed scheme. As shown in Figure 7, there is
no performance degradation by using the power reduction scheme in the fastest
execution mode, while the energy consumption is reduced as shown in Figure 8.
The proposed scheme reduced the consumed energy by 36.3 %(from 102[J] down
to 65.0[J]) for 2 processors, 60.7 %(from 174[J] down to 68.4[J]) for 4 processors
in applu, 1.56 %(from 92.1[J] down to 90.6[J]) for 2 processors, 4.64 %(from
95.0[J] down to 90.6[J]) for 4 processors in tomcatv.

The reason why the proposed scheme can not reduce the energy consumption
in tomcatv and swim is that the both application programs have large parallelism
and the all processors must execute in “FULL” mode to attain the minimum
execution time. The parallel execution time of these programs with 4 processors
is about one quarter of sequential execution time. Therefore, though the power
consumption is quadrupled by using 4 processors, the total energy consumption
is almost equal to the energy of sequential execution.

On the other hand, there is a certain amount of idle time in applu. Therefore,
the following controls were made. Figure 6 shows the main loop to which the
power reduction scheme is applied for 4 processors. The DOALL6, LOOP10-13,
DOALL17, LOOP18-21, DOALL22 had no margin, then their frequencies were
set to FULL. MID or LOW was chosen for other MTs according to each margin
of task. Furthermore, the proposed scheme shut off the power supply in the idle
times.

4.2 Performance in real-time execution mode with deadline
constraints

Next, the evaluation results of real-time execution mode with the deadline con-
straint are described. Figure 9 shows the speedup ratio and Figure 10 shows the

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

1 2 4 1 2 4 1 2 4

tomcatv swim applu
benchmark

sp
e
e
d

u
p

 r
a
ti

o

w/o Saving

Full Speed & Shutdown

w Proposed Saving

Fig. 9. Speedup in deadline mode

total energy consumption with the real-time deadline that was set to equal to
the sequential execution time. The left bars represents the results of OSCAR
compiler without any power reduction scheme. In this case, each processor con-
sumes energy until the deadline. The middle bars show the results of full speed
execution and shutdown, in which all processors run at FULL frequency and are
powered off after execution. The right bars show the results of OSCAR compiler
using the proposed power reduction scheme. The speedup ratio of the proposed
scheme could be kept almost 1, as shown in Figure 9. This means the proposed
scheme could satisfy the deadline constraints, or the sequential processing time.

Figure 10 shows that the reduced energy for the proposed real-time processing
mode were 60.1 %(from 181[J] down to 72.2[J]) for 2 processors, 85.6 %(from
361[J] down to 51.9[J]) for 4 processors in tomcatv, 62.0 %(from 207[J] down to
78.7[J]) for 2 processors, 86.7 %(from 414[J] down to 55.2[J]) for 4 processors
in swim and 50.0 %(from 127[J] down to 63.3[J]) for 2 processors, 74.0 %(from
253[J] down to 65.8[J]) for 4 processors in applu against the case in which the
proposed power reduction method was not applied. Also, the proposed scheme
reduced 21.6 %(from 92.1[J] down to 72.2[J]) for 2 processors, 45.4 %(from 95.0[J]
down to 51.9[J]) for 4 processors in tomcatv, 23.7 %(from 103[J] down to 78.7[J])
for 2 processors, 46.5 %(from 103[J] down to 55.2[J]) for 4 processors in swim
and 37.8 %(from 102[J] down to 63.3[J]) for 2 processors, 62.2 %(from 174[J]
down to 65.8[J]) for 4 processors in applu compared with full speed execution
and shutdown.

These results shows the proposed scheme could realize large power reduction
for programs with large parallelism under the real-time execution mode.

5 Conclusions

This paper has proposed compiler control power reduction scheme for chip mul-
tiprocessors. The proposed scheme can be applied for both the fastest parallel
executing mode and the real-time execution mode with deadline constraint. The
scheme gives us good effective performance and low energy consumption for the
both modes.

0
50

100
150
200
250
300
350
400
450

1 2 4 1 2 4 1 2 4

tomcatv swim applu
benchmark

e
n
e

rg
y

(J
)

w/o Saving

Full Speed & Shutdown

w Proposed Saving

Fig. 10. Energy in deadline mode

The evaluation using OSCAR multigrain parallelizing compiler has shown
the proposed scheme gave 60.7 percent energy reduction for SPEC CFP95 applu
using 4 processors without the performance degradation, and 85.6 percent energy
reduction for SPEC CFP95 tomcatv using 4 processors with real-time deadline
constraint, or the sequential processing time, and 86.7 percent energy reduction
for SPEC CFP95 swim using 4 processors with the deadline constraint.

The detailed evaluation using an actual multiprocessor and the implement
of the dynamic scheduling are the future works.

Acknowledgments

A part of this research has been supported by NEDO “Advanced Heterogeneous
Multiprocessor”, STARC “Automatic Parallelizing Compiler Cooperative Single
Chip Multiprocessor” and NEDO “Multi core processors for real time consumer
electronics”.

References

1. A. Suga, K. Matsunami: Introducing the FR 500 embedded microprocessor. IEEE
MICRO 20 (2000) 21–27

2. J Cornish: Balanced Energy Optimization. International Symposium on Low Power
Electronics and Design (2004)

3. Dac Pham et al: The Design and Implementation of a First-Generation CELL
Processor. In Proceeding of the IEEE International Solid-State Circuits Conference
(2005)

4. Intel Multi-core: http://www.intel.com/multi-core/
5. M.Wolfe: High Performance Compilers for Parallel Computing. Addison-Wesley

Publishing Company (1996)
6. R. Eigenmann, J. Hoeflinger, D. Padua: On the Automatic Parallelization of the

Perfect Benchmarks. IEEE Trans. on parallel and distributed systems 9 (1998)
7. M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy, S. Liao, E. Bugnion,

M. S. Lam: Maximizing Multiprocessor Performance with the SUIF Compiler.
IEEE Computer (1996)

8. Marc Gonzalez, Xavier Martorell, Jose Oliver, Eduard Ayguade, Jesus Labarta:
Code Generation and Run-time Support for Multi-level Parallelism Exploitation.
Proc. of the 8th International Workshop on Compilers for Parallel Computing
(2000)

9. H. Honda, M. Iwata, H. Kasahara: Coarse Grain Parallelism Detection Scheme of
a Fortran Program. Trans. of IEICE J73-D-1 (1990) 951–960

10. H.Kasahara and et al: A Multi-grain Parallelizing Compilation Scheme on OSCAR.
Proc. 4th Workshop on Language and Compilers for Parallel Computing (1991)

11. Hironori Kasahara: Advanced Automatic Parallelizing Compiler Technology. IPSJ
MAGANIE (2003)

12. David H. Albonesi, et al: Dynamically tuning processor resources with adaptive
processing. IEEE Computer (2003)

13. Q. Wu, P. Juang, M. Martonosi, D. W. Clark: Formal Online Methods for Volt-
age/Frequency Control in Multiple Clock Domain Microprocessors. Eleventh In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems (2004)

14. Chung-Hsing Hsu, Ulrich Kremer: The Design, Implementation, and Evaluation of
a Compiler Algorithm for CPU Energy Reduction. The ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (2003)

15. M. Obata, J. Shirako, H. Kaminaga, K. Ishizaka, H. Kasahara: Hierarchical Par-
allelism Control for Multigrain Parallel Processing. Proc. of 15th International
Workshop on Languages and Compilers for Parallel Computing (2002)

16. K. Ishizaka, T. Miyamoto, J. Shirako, M. obata, K. kimura, H. Kasahara: Per-
formance of OSCAR Multigrain Parallelizing Compiler on SMP Servers. Proc. of
17th International Workshop on Languages and Compilers for Parallel Computing
(2004)

17. Jun shirako, Kouhei Nagasawa, Kazuhisa Ishizaka, Motoki Obata, Hironori Kasa-
hara: Selective Inline Expansion for Improvement of Multi Grain Parallelism.
PDCN (2004)

18. H. Kasahara, H. Honda, M. Iwata, M. Hirota: A Compilation Scheme for Macro-
dataflow computation on Hierarchical Multiprocessor System. Proc. Int Conf. on
Parallel Processing (1990)

19. H. Kasahara, S. Narita, S. Hashimoto: Architecture of OSCAR. Trans of IEICE
J71-D (1988)

20. H. Kasahara, H. Honda, S. Narita: Parallel Processing of Near Fine Grain Tasks
Using Static Scheduling on OSCAR. Proceedings of Supercomputing ’90 (1990)

21. K. Kimura, W. Ogata, M. Okamoto, H. Kasahara: Near Fine Grain Parallel Pro-
cessing on Single Chip Multiprocessors. Trans. of IPSJ 40 (1999)

22. David Brooks, Vivek Tiwari, Margaret Martonosi: Wattch: A Framework for
Architectural-Level Power Analysis and Optimizations. Proc. of the 27th ISCA
(2000)

23. Hiroshi Kawaguchi, Youngsoo Shin, Takayasu Sakurai: uITRON-LP: Power-
Conscious Real-Time OS Based on Cooperative Voltage Scaling for Multimedia
Applications. IEEE Transactions on multimedia (2005)

