
Automatic Coarse Grain Task Parallel Processing

Using OSCAR Multigrain Parallelizing Compiler

Motoki Obata, Kazuhisa Ishizaka, Hironori Kasahara

Waseda University

NEDO Advanced Parallelizing Compiler Project

3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan

fkasahara,obata,ishizakag@oscar.elec.waseda.ac.jp

Abstract

This paper describes a simple and eÆcient imple-
mentation method of automatic coarse grain task
parallel processing named \One-time single level
thread generation" using OSCAR multigrain par-
allelizing compiler for a SMP machine. The coarse
grain task parallel processing is important to im-
prove the e�ective performance of wide range of
multiprocessor systems from a single chip multi-
processor to a high performance computer beyond
the limit of the loop parallelism. The proposed
method realizes hierarchical coarse grain task par-
allel processing using static, centralized dynamic
or distributed dynamic scheduling for each nested
macro-task graph with use of ordinary thread gener-
ation method like OpenMP. The performance evalu-
ation of the proposed method, which generates par-
allelized program based on \One-time single level
thread generation" using OpenMP from a sequen-
tial Fortran program, shows that OSCAR compiler
gives us 6.3 times speed up in average against se-
quential processing on RS6000 SP 604e High Node
8-processor SMP machine for �ve application pro-
grams from SPEC 95fp and Perfect Benchmarks
though IBM XL Fortran automatic loop paralleliz-
ing compiler gives us 3.3 times speed up in average.

1 Introduction

Currently, multiprocessor system, especially shared
memory multiprocessor system, is widely used.
However, the gap between peak performance and
e�ective performance is getting large with the in-
crease of processors.
The loop parallelization techniques, such as Do-

all and Do-across, have been used in Fortran paral-
lelizing compilers for multiprocessor systems[1, 2].
Currently, many types of Do-loop can be par-
allelized with various data dependency analysis
techniques[3, 4] such as GCD, Benerjee's inexact

and exact tests[1, 2], OMEGA test[5], symbolic
analysis[6], semantic analysis and dynamic depen-
dence test and program restructuring techniques
such as array privatization[7], loop distribution,
loop fusion, strip mining and loop interchange [8, 9].

For example, Polaris compiler[10, 11, 12] ex-
ploits loop parallelism by using inline expan-
sion of subroutine, symbolic propagation, array
privatization[7, 11] and run-time data dependence
analysis[12]. SUIF compiler parallelizes loops by us-
ing inter-procedure analysis[13, 14, 15], unimodular
transformation and data locality optimization[16,
17].

However, these compilers cannot parallelize loops
that include complex loop carrying dependences
and conditional branches to the outside of a loop.
Considering these facts, the coarse grain task par-
allelism should be exploited to improve the e�ec-
tive performance of multiprocessor systems further
in addition to the improvement of data dependence
analysis, speculative execution and so on.

NANOS compiler[18, 19] based on Parafrase2 has
been trying to exploit multi-level parallelism in-
cluding the coarse grain parallelism by using ex-
tended OpenMP API. PROMIS compiler[20, 21]
hierarchically combines Parafrase2 compiler[22] us-
ing HTG[23] and symbolic analysis techniques[6]
and EVE compiler for �ne grain parallel processing.
Currently, PROMIS compiler has been developing
in University of Illinois for practical use.

OSCAR compiler has realized a multi-grain par-
allel processing [24, 25, 26] that e�ectively combines
the coarse grain task parallel processing [24, 25,
26, 27, 28, 29], the loop parallelization and near
�ne grain parallel processing[30]. In OSCAR com-
piler, coarse grain tasks are dynamically scheduled
onto processors or processor clusters to cope with
the run-time uncertainties caused by conditional
branches by dynamic scheduling routine generated
by the compiler.

Base on research on OSCAR compiler in Japan,

Advanced Parallelizing Compiler(APC) project[31]
was started to improve the e�ective performance,
ease of use and cost performance of shared memory
multiprocessor systems by using multiple grain of
parallelism in addition to ordinary loop level paral-
lelism.
This paper describes the implementation scheme

of a coarse grain task parallel processing on a com-
mercially available SMP machine and its perfor-
mance. Ordinary sequential Fortran programs are
parallelized using by OSCAR compiler automat-
ically and a parallelized program with OpenMP
API[32, 33] is generated. In other words, OSCAR
Fortran Compiler is used as a pre-processor which
transforms a Fortran program into a parallelized
OpenMP Fortran realizing static scheduling and
centralized and distributed dynamic scheduling for
coarse grain tasks depending on parallelism of the
source program and performance parameters of the
target machines. Parallel threads are forked only
once at the beginning of the program and joined
only once at the end to minimize fork/join over-
head by using \One-time single level thread gener-
ation" scheme. Though OpenMP API is chosen as
the thread creation method in this paper because
of the portability, this implementation scheme can
be used for other thread generation method as well.
The performance of the proposed coarse grain

task parallel processing in OSCAR multigrain com-
piler is evaluated on IBM RS6000 SP 604e High
Node 8 processors SMP machine. In the evaluation,
OSCAR multigrain compiler automatically gener-
ates coarse grain parallel processing codes using a
subset of OpenMP directives supported by IBM XL
Fortran version 5.1. The codes are compiled by XL
Fortran and executed on 8 processors of RS6000 SP
604e High Node.
The rest of this paper is composed as follows.

Section 2 introduces the coarse grain task parallel
processing scheme. Section 3 shows the implemen-
tation method of the coarse grain task paralleliza-
tion on a SMP. Section 4 evaluates the performance
of this method on IBM RS6000 SP 604e High Node
for several programs like Perfect Benchmarks and
SPEC 95fp Benchmarks.

2 Coarse Grain Task Parallel

Processing

Coarse grain task parallel processing uses paral-
lelism among three kinds of macro-tasks, namely,
Basic Block(BB), Repetition Block(RB or loop) and
Subroutine Block(SB). Macro-tasks are generated
by decomposition of a source program and assigned
to processor clusters or processor elements and ex-

ecuted in parallel inter and/or intra processor clus-
ters.
The coarse grain task parallel processing scheme

in OSCAR multigrain automatic parallelizing com-
piler consists of the following steps.

1. Generation of macro-tasks from a source code
of an ordinary sequential program

2. Generation of Macro-Flow Graph which repre-
sents data dependency and control ow among
macro-tasks.

3. Generation of Macro-Task Graph representing
parallelism among macro-tasks by Earliest Ex-
ecutable Condition analysis [24, 27, 28] unify-
ing control and data dependencies.

4. Scheduling of macro-tasks in each nest level
processors or processor clusters. If a macro-
task graph in a nest level has only data de-
pendency edges, the macro-tasks are assigned
to processor clusters or processor elements by
static scheduling at compile-time. If a macro-
task graph has both data dependency and con-
trol dependency edges, macro-tasks are as-
signed to processor clusters or processor ele-
ments at run-time by dynamic scheduling rou-
tine generated and embedded into the paral-
lelized user code by the compiler.

In the following, these steps are briey explained.

2.1 Generation of Macro-tasks

In the coarse grain task parallel processing, a
source program is decomposed into three kinds of
macro-tasks, namely, Basic Block(BB), Repetition
Block(RB) and Subroutine Block(SB) as mentioned
above.
If there is a parallelizable loop, it is decomposed

into smaller loops in the iteration direction and the
decomposed partial loops are de�ned as di�erent
macro-tasks. The number of decomposed loops is
decided considering the number of processor clus-
ters and processor elements, cache size or memory
size.
RBs composed of a sequential loops having large

processing cost and SBs to which inline expan-
sion can not apply e�ectively are decomposed
into macro-tasks hierarchically and the hierarchi-
cal coarse grain task parallel processing is applied
as shown in Figure 2 explained later.

2.2 Generation of Macro-ow Graph

Next, the data dependency and control ow among
macro-tasks for each nest level are analyzed hier-
archically. The control ow and data dependency

Data Dependency
Extended Contorol Dependency
Conditional Branch

OR
AND

Original Control Flow

1

2 3

4

5

6

7

8

910 11

12

13

14

Data Dependency

Control Flow

Conditional Branch

1

2 3

4

5

6

7

8

9 10

11

12

13

14

(b) Macro Task Graph (MTG)(a) Macro Flow Graph (MFG)

Figure 1: Macro ow graph and macro-task graph

among macro-tasks are represented by macro-ow
graph as shown in Figure 1(a).
In the �gure, nodes represent macro-tasks, solid

edges represent data dependencies among macro-
tasks and dotted edges represent control ow. A
small circle inside a node represents a conditional
branch inside the macro-task. Though arrows of
edges are omitted in the macro-ow graph, it is as-
sumed that the directions are downward.

2.3 Generation of Macro-task Graph

Though the generated macro-ow graph represents
data dependencies and control ow, it does not
represent parallelism among macro-tasks. To ex-
tract parallelism among macro-tasks from macro-
ow graph, Earliest Executable Condition analysis
considering data dependencies and control depen-
dencies is used. Earliest Executable Condition rep-
resents the conditions on which macro-task may be-
gin its execution earliest. It is obtained assuming
the following conditions.

1. If Macro-Task(MT)i is data-dependent on
MTj, MTi cannot begin execution before MTj

�nishes execution.

2. If the branch direction of MTj is determined,
MTi that is control-dependent but not data-
dependent on MTj can begin execution even
though MTj has not completed its execution.

For example, the simplest form of Earliest Exe-
cutable Condition of MT6 is the following:

(MT3 completes execution
OR

MT2 takes a branch that
guarantees execution of MT4).

Earliest Executable Condition of macro-task is
represented in a macro-task graph as shown in Fig-
ure 1(b).

In the macro-task graph, nodes represent macro-
tasks. A small circle inside nodes represents condi-
tional branches. Solid edges represent data depen-
dencies. Dotted edges represent extended control
dependencies. Extended control dependency rep-
resents ordinary control dependency and the con-
dition on which a data dependence predecessor of
MTi is not executed.

Solid and dotted arcs connecting solid and dotted
edges have two di�erent meanings. A solid arc rep-
resents that edges connected by the arc are in AND
relationship. A dotted arc represents that edges
connected by the arc are in OR relation ship.

In MTG, though arrows of edges are omitted as-
suming downward, an edge having arrow represents
original control ow edges, or branch direction in
macro-ow graph.

2.4 Generation of Scheduling Rou-

tine

In the coarse grain task parallel processing, dy-
namic scheduling and static scheduling are used
for assignment of macro-tasks to processor clusters
or processor elements. In the dynamic scheduling,
MTs are assigned to processor clusters or proces-
sor elements at run-time to cope with run-time un-
certainties like conditional branches. The dynamic
scheduling routine is generated and embedded into
user program by OSCAR compiler to eliminate the
overhead of OS call for thread scheduling.

Though generally dynamic scheduling overhead is
large, overhead of the compiler generated dynamic
scheduling routine is relatively small since it is opti-
mized by the compiler and also used for the coarse
grain tasks assignment.

Furthermore, two kinds dynamic scheduling
scheme are adopted, namely, centralized dynamic
scheduling in which the scheduling routine is ex-
ecuted by a processor element, and distributed
scheduling in which the scheduling routine is dis-
tributed to all processors.

In static scheduling, assignment of macro-tasks
to processor clusters or processor elements is de-
termined at compile-time if macro-task graph has
only data dependency edges and task processing
times can be accurately estimated. Static schedul-
ing is e�ective to minimize data transfer and syn-
chronization overheard without run-time scheduling
overhead.

3 Implementation of Coarse

Grain Task Parallel Process-

ing Using OpenMP

This section describes an implementation method
of the coarse grain task parallel processing using
OpenMP for SMP machines.

Though macro-tasks are assigned to proces-
sor clusters or processor elements in the coarse
grain task parallel processing in OSCAR compiler,
OpenMP supports the thread level parallel process-
ing. Therefore, the coarse grain parallel processing
is realized by corresponding a thread to a processor
element, and a thread group to a processor cluster.

This scheme can be realized with other thread
creation methods as well, though OpenMP is used
in this paper as an example of thread generation
methods with high portability.

3.1 Generation of Threads

In the proposed \One-time single level thread gener-
ation" coarse grain task parallel processing scheme
using OpenMP, threads are generated by PARAL-
LEL SECTIONS directive only once at the begin-
ning of the execution of program.
Generally, upper level master threads fork nested

children threads to realize nested or hierarchical
parallel processing. However, this scheme realizes
the hierarchical parallel processing by writing all
hierarchical behavior, or by embedding hierarchi-
cal scheduling routines, in a section between PAR-
ALLEL SECTIONS and END PARALLEL SEC-
TIONS. This scheme allows us to minimize thread
fork and join overhead and to implement hierarchi-
cal coarse grain task parallel processing without any
language extension.

3.2 Macro-task scheduling

This section describes code generation schemes us-
ing static and dynamic scheduling for hierarchical
coarse grain task parallel processing.
OSCAR compiler can choose the centralized dy-

namic scheduling and/or the distributed dynamic
scheduling scheme in addition to static scheduling
to assign macro-tasks to threads or thread groups.
These scheduling methods are used considering par-
allelism of the source program, a number of proces-
sors, data transfer and synchronization overhead of
a target multiprocessor system with their any hier-
archical combinations. In the centralized dynamic
scheduling, scheduling code is assigned to a sin-
gle thread. In the distributed dynamic scheduling,
scheduling code is distributed to before and after
each task assuming exclusive access to the schedul-
ing tables. Those scheduling methods can be hi-
erarchically combined freely depending on program
parallelism, the number of processors available for
the program layer, synchronization overhead and so
on.

3.2.1 Centralized dynamic scheduling

In the centralized scheduling scheme, one thread
in a parallel processing layer choosing centralized
scheduling serves as a centralized scheduler, which
assigns macro-tasks to threads or thread groups.
The behavior of the centralized scheduler written

in OpenMP \SECTION" is shown in the following.

step1 Receive a completion or branch signal from
each macro-task.

step2 Check Earliest Executable Condition(EEC),
and enqueue ready macro-tasks which satisfy
EEC to a ready task queue.

C
entralized S

cheduler

MT3(RB)

MT1(parallelizable loop)

DO

END DO

DO

END DO

group0_0 group0_1

!$OMP SECTION !$OMP SECTION!$OMP SECTION!$OMP SECTION
Thread0 Thread1 Thread2 Thread3

!$OMP SECTION !$OMP SECTION!$OMP SECTION !$OMP SECTION
Thread4 Thread6Thread5 Thread7

MT2(SB)

MT1_1(RB)
(partial loop)

MT1_2(RB)
(partial loop)

MT1_3(RB)
(partial loop)

MT1_4(RB)
(partial loop)

EndMT EndMT EndMT EndMT

MT2_1

MT2_2

MT2_3

MT2_4

MT2_1

MT2_2

MT2_3

MT2_4

Busy
Wait

Busy
Wait

Busy
Wait

Dynamic SchedulerDynamic Scheduler

Dynamic Scheduler Dynamic Scheduler

EndMT

Dynamic Scheduler Dynamic Scheduler

2nd. layer: MT2_1, MT2_2...(centralized dynamic)
MT3_1, MT3_2...(distributed dynamic)

3rd. layer: MT3_1a, MT3_1b...(static)

(MT3_1a) (MT3_1b)

(MT3_2a) (MT3_2b)

(MT3_1a) (MT3_1b)

(MT3_2a) (MT3_2b)

MT3_1 MT3_1

MT3_2 MT3_2

3rd. layer
thread

MT2_1

MT2_2

MT2_3

MT2_4

1st. layer: MT1, MT2, MT3 (static)

1st. layer
thread group

2nd. layer
thread group

Figure 2: Code image (8 threads)

step3 Find a thread group or thread, to which a
ready macro-task should be assigned according
to the priority of Dynamic CP method.[24]

step4 Assign a macro-task to the thread group or
a thread. If the assigned macro-task is \End
MT"(EMT), the centralized scheduler �nishes
scheduling routine in the layer.

step5 Jump to step1.

During dynamic scheduling at run-time, when a
macro-task �nishes execution or determines branch
direction, it sends the signals to the centralized
scheduler. The centralized scheduler busy waits for
these signals. If the centralized scheduler receives
these signals, it quickly searches new executable, or
ready, macro-tasks by checking Earliest Executable
Condition with optimized scheduling code gener-
ated by the compiler.
If a ready macro-task is found, the centralized

scheduler �nds a thread group or a thread to which
a macro-task should be assigned. The centralized
scheduler assigns macro-tasks to the slave threads
and goes back to the signal waiting routine. Slave
threads to which no task is assigned execute the
busy wait code until a task is assigned by the sched-
uler. After the completion of the assigned macro-
task, the slave threads go back to the busy wait
routine.
Figure 2 shows an image of generated OpenMP

code for each thread. Sub macro-tasks generated in-
side of Macro-Task(MT)2 and MT3 in the 1st layer

are represented as macro-tasks in the 2nd layer like
MT2 1, MT2 2, MT3 1, MT3 2 and so on. In this
example, a centralized scheduling scheme is applied
to the 2nd layer inside MT2 in the 1st layer and
a distributed scheduling scheme is applied to inside
MT3 in the 1st layer. The 2nd layer macro-tasks in-
side MT2 are executed on Thread 4�6 and Thread 7
as a centralized dynamic scheduler. In the dynamic
scheduling mode, since every thread or thread group
has a possibility to execute all macro-tasks, so the
same code including all macro-tasks is copied into
each OpenMP \SECTION" for each slave thread as
shown in Thread 4�6 of Figure 2.
Inside MT3 1 and MT3 2 in the 2nd layer, macro-

tasks like MT3 1a, MT3 1b and so on in the 3rd
layer are generated. Figure 2 also exempli�es a code
image in a case where the 2nd layer macro-tasks in-
side MT3 in the 1st layer are dynamically scheduled
to threads by the distributed scheduler. The details
of distributed scheduling are described later.
Also, the compiler generates a special macro-task

called \End MT"(EMT) in each layer. As shown in
the 2nd layer inside MT2 in Figure 2, the EndMT is
written at the end of all OpenMP \SECTION", and
centralized scheduler assigns EMT to the all thread
groups when all thread executing the same hierar-
chy �nish. After assigning EMT to the all thread,
centralized scheduler �nishes scheduling routine in
the layer. Each thread group jumps to outside of its
hierarchy or nest level. If the hierarchy is a top layer
or main routine, the program �nishes the execution.
If there exists an upper layer, threads continue to

execute the upper layer macro-tasks.

3.2.2 Distributed Dynamic Scheduling.

In the distributed dynamic scheduling mode, each
thread group schedules a macro-task to itself and
executes the assigned macro-task.
In this scheduling scheme, all shared data for

scheduling are shared and accessed exclusively as
shown in the following.

step1 Search ready macro-tasks that satisfy Ear-
liest Executable Condition by the completion
or a branch of the macro-task and enqueue the
ready macro-tasks to the ready task queue with
exclusive access to shared data for dynamic
scheduling.

step2 Choose a macro-task, which the thread
should execute next, considering Dynamic
CP[24] algorithm's priority.

step3 Execute the macro-task

step4 Update the Earliest Executable Condition
table exclusively.

step5 Go back to step1

For example, this distributed dynamic schedul-
ing scheme is applied to the 2nd layer inside MT3
in the 1st layer in Figure 2 and two thread groups
that consist of two threads are realized in this layer
by only executing the thread code generated by OS-
CAR compiler.

3.2.3 Static Scheduling Scheme

If a macro-task graph has only data dependen-
cies, the static scheduling scheme is applied to the
macro-task graph to reduce data transfer, synchro-
nization and scheduling overheads.
In the static scheduling, the assignment of macro-

tasks to thread groups or threads is determined
at compile-time. Therefore, each OpenMP \SEC-
TION" needs only the macro-tasks that should
be executed in the order pre-determined by static
scheduling algorithms CP/DT/MISF, DT/CP and
ETF/CP. In other words, the compiler generates
di�erent program to each threads as shown in the
1st layer of Figure 2. When this static scheduling
is used, it is assumed that each thread is bound to
a processor.
If each thread group needs to synchronize and

transfer data among other thread groups in the
same hierarchy to satisfy the data dependency
among macro-tasks as static scheduling result, OS-
CAR compiler prepares shared variables and pro-
gram codes for the data transfer and generates busy

Fortran77 Source Code

Intermediate Language

Intermediate Language

Fortran
VPP

VPP
Back End

Native
Machine

for OSCAR
Code

OSCAR
Back End

Native
Machine
Code

Back End
Ultra SparcSTA MPI

Back End

+ STAMPI
(MPI2)

Fortran

OpenMP
Back End

Fortran

OpenMP

OpenMP Fortran Source Code

Front End

 Middle Path
Multi Grain Parallelization

Static Scheduling
Dynamic Scheduler Generation

-Coarse Grain Parallelization
-Loop Parallelization
-Near Fine Parallelization

Figure 3: OSCAR Fortran Compiler

wait code by using the shared variables for synchro-
nization.

For example, static scheduling scheme is applied
to the 1st layer shown in Figure 2. Each OpenMP
\SECTION" for Thread 0�3 have only codes of
MT1 and MT3 and parts of Thread 4�7 have only
codes of MT2 in the 1st layer.

4 Performance Evaluation

This section describes the optimization for exploit-
ing coarse grain task parallelization by OSCAR
Fortran Compiler and its performance for several
programs in Perfect benchmarks and SPEC 95fp
benchmarks on IBM RS6000 SP 604e High Node 8
processor SMP.

4.1 OSCAR Fortran Compiler

OSCAR Fortran Compiler consists of Front End,
Middle Path and Back Ends as shown in Figure
3. OSCAR Fortran Compiler has various Back
Ends for di�erent target multiprocessor systems like
OSCAR distributed/shared memory multiproces-
sor system[34], UltraSparc, MPI-2 and OpenMP.
OpenMP Back End used in this paper, which gen-
erates the parallelized Fortran source code with
OpenMP directives. In other words, OSCAR For-
tran Compiler is used as a pre-processor that trans-
forms from an ordinary sequential Fortran program
to OpenMP Fortran program for SMP machines.

1 2 3

4

56

7

89

10

11 12

13

14

15

16

17 18

19

20 21

22

23 24

2526

27

2829

30

31 32

33

34 35

3637

38

39 40

41

42 43

44

4546

47 48

49

50 51

52

53 54

55

56 57

5859

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76 77

78

79

80

81

82

83

84

85

86

878889

90 91 92

93

94 95

96

97

98 99

100 101

102

103104

105

106

107108

109 110

111

112 113

114

115

116117

118 119

120

121 122 123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139 140

141 142 143 144

145 146 147 148

149

Figure 4: Optimized macro-task graph of subrou-
tine INTEGR in ARC2D

4.2 Evaluation environment

In this evaluation, a coarse grain parallelized pro-
gram automatically generated by OSCAR compiler
is compiled by IBM XL Fortran compiler version
5.1[35] and executed on 1 through 8 processors of
RS6000 SP 604e High Node. RS6000 SP 604e High
Node is SMP having 8 PowerPC 604e processors
and each processor has 32KB L1 instruction and
data caches and 1MB L2 uni�ed cache. The perfor-
mance of OSCAR compiler with XL Fortran com-
piler is compared with native IBM XL automatic
parallelizing Fortran compiler[36] and shown as the
di�erence of speed-up ratio. Speed-up ratio is cal-
culated by (sequential execution time) / (parallel
processing time). As the sequential execution time,
the shortest execution time by XL Fortran Compiler
using maximum optimization options is used. In the
compilation for parallel processing by a XL Fortran,
maximum optimization option \-qsmp=auto -O3 -
qmaxmem=-1 -qhot" is used.

M
T

1
M

T
4

M
T

7
9

M
T

8
0

M
T

6
7

M
T

6
8

M
T

3
9

M
T

4
2

M
T

1
2

M
T

1
3

M
T

8

M
T

1
0

M
T

7
3

M
T

7
4

M
T

7
6

M
T

7
8

M
T

1
3

6

M
T

1
3

7
M

T
1

3
8

M
T

8
4

M
T

2
7

M
T

6
6

M
T

1
2

7

M
T

7
2

M
T

1
3

2
M

T
1

3
3

M
T

9
1

MT118

M
T

1
2

1

M
T

1
3

4

M
T

1
4
1

M
T

1
4

6

M
T

2

M
T

1
4

M
T

1
5

M
T

1
7

M
T

2
0 MT5

M
T

1
6

M
T

8
2

M
T

7
0

M
T

5
6

M
T

6
0

M
T

1
1

2

M
T

1
1

6
M

T
8

6

M
T

1
2

8
M

T
8

8
M

T
9

2
M

T
9

0

MT100

M
T

1
2

3

M
T

1
3

9

M
T

1
4
2

M
T

1
4
8

M
T

1
4

7

M
T

3

M
T

5
0

M
T

5
3

M
T

6
1

M
T

6
2

M
T

2
8

M
T

3
1

M
T

1
1

M
T

7

M
T

2
3

M
T

6
4

M
T

4
5

M
T

4
9

M
T

1
0

3

M
T

1
0

7
M

T
3
4

M
T

3
8

M
T

9
4

M
T

9
8

MT109

M
T

1
2

2

M
T

1
2

9

M
T

1
4
3

M
T

1
4
5

Thread 0

Thread 1

Thread 2

Figure 5: Execution trace data of INTEGR

Processors

Sp
ee

d
U

p
R

at
io

OSCAR
XL

1 2 3 4 6 8
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0

23.3s

77.5s 60.1s

Figure 6: Speed-up ratio of ARC2D

4.3 Evaluation result

The programs used for performance evaluation are
ARC2D in Perfect Benchmarks, SWIM, TOM-
CATV, HYDRO2D, MGRID in SPEC 95fp Bench-
marks. ARC2D is an implicit �nite di�erence code
for analyzing uid ow problems and solves Eu-
ler equations. SWIM solves the system of shallow
water equations using �nite di�erence approxima-
tions. TOMCATV is a vectorized mesh genera-
tion program. HYDRO2D is a vectorizable For-
tran program with double precision oating-point
arithmetic. MGRID is the Multi-grid solver in 3D
potential �eld.
First, as an example of coarse grain task par-

allelism exploitation, compiler optimizations for
ARC2D are described. ARC2D has about 4500
statements including 40 subroutines. More than
90% of the execution time is spent in subroutine IN-
TEGR. Since subroutine INTEGR has several sub-
routines including loops having the small number
of iterations, only use of the loop level parallelism
cannot attain large performance improvement even
if more than 4 or 5 processors are used. There-
fore, OSCAR compiler applies loop unrolling to the
loops inside the subroutines. In addition, the in-
line expansion is applied to the subroutine calls in
the subroutine INTEGR for extracting more coarse
grain parallelism. As the result, macro-task graph

Processors

S
p

ee
d

 U
p

 R
at

io

OSCAR
XL

1 2 3 4 5 6 7 8
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0

154s

484s691s

Figure 7: Speed-up ratio of TOMCATV

Processors

S
p

ee
d

 U
p

 R
at

io

OSCAR
XL

1 2 3 4 5 6 7 8
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

112s

551s

61s

Figure 8: Speed-up ratio of SWIM

of subroutine INTEGR shown in Figure 4.3 is gener-
ated. The performance di�erence between OSCAR
compiler and XL Fortran compiler in Figure 4.3
come from the coarse grain parallelism detected by
OSCAR compiler. Figure 4.3 shows the execution
trace image of subroutine INTEGR by distributed
dynamic scheduling among 3 threads. Scheduling
overhead is very small as shown in the edges be-
tween macro-tasks in Figure 4.3.

Figure 6 shows speed-up ratios for ARC2D by the
proposed coarse grain task parallelization scheme
in OSCAR compiler and the automatic loop par-
allelization by XL Fortran compiler. In this �g-
ure, the numbers with bar charts for 1 and 8PE
show each execution time. The sequential process-
ing time for ARC2D was 77.5s and parallel pro-
cessing time by XL Fortran version 5.1 compiler
using 8 processors was 60.1s. On the other hand,
the execution time of coarse grain parallel process-
ing using 8 processors by OSCAR Fortran compiler
combined with XL Fortran compiler was 23.3s. In
other words, OSCAR compiler gave us 3.3 times
speed up against sequential processing time and 2.6
times speed up against native XL Fortran compiler
for 8 processors. The performance di�erence be-
tween OSCAR compiler and XL Fortran compiler
come from the exploitation of the coarse grain par-

Processors

S
p

ee
d

 U
p

 R
at

io

OSCAR
XL

1 2 3 4 5 6 7 8
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0

221s

128s

1036s

Figure 9: Speed-up ratio of HYDRO2D

Processors

S
p

ee
d

 U
p

 R
at

io

OSCAR
XL

1 2 3 4 5 6 7 8
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0

97.4s

157s

658s

Figure 10: Speed-up ratio of MGRID

allelism by OSCAR compiler.

Next, Figure 7 shows speed-up ratio for TOM-
CATV. The sequential execution time of TOM-
CATV was 691s. The parallel processing time using
8 processors by XL Fortran was 484s and 1.4 times
speed-up against sequential execution time. On the
other hand, the coarse grain parallel processing us-
ing 8 processors by OSCAR Fortran compiler was
154s and gave us 4.5 times speed-up against sequen-
tial execution time. OSCAR Fortran compiler also
gave us 3.1 times speed up compared with XL For-
tran compiler using 8 processors.

Figure 8 shows speed-up ratio for SWIM. The se-
quential execution time of SWIM was 551s. While
the automatic loop parallel processing time using
8 processors by XL Fortran needed 112.7s and 4.9
times speed-up was attained, coarse grain task par-
allel processing by OSCAR Fortran compiler re-
quired only 61.1s and gave us 9.0 times speed-up
by the e�ective use of distributed caches against
the sequential execution time and 1.8 times speed-
up compared with XL Fortran compiler.

Figure 9 shows speed-up in HYDRO2D. The
sequential execution time of Hydro2d was 1036s.
While XL Fortran gave us 4.7 times speed-up (221s)
using 8 processors compared with the sequential ex-
ecution time, OSCAR Fortran compiler gave us 8.1

times speed-up (128s) compared with sequential ex-
ecution time.

Finally, Figure 10 shows speed-up ratio for
MGRID. The sequential execution time of MGRID
was 658s. For this application, XL Fortran com-
piler attains 4.2 times speed-up, or processing time
of 157s, using 8 processors. Also, OSCAR compiler
achieved 6.8 times speed up, or 97.4s. Namely, OS-
CAR Fortran compiler gave us 1.6 times speed-up
compared with XL Fortran compiler for 8 proces-
sors.

5 Conclusions

This paper has described the realization scheme of
the automatic coarse grain task parallel processing
and its performance on an o� the shelf SMP ma-
chine.

OSCAR compiler generates coarse grain paral-
lelized code using OpenMP API which forks threads
only once at the beginning of a program and joins
only once at the end, namely \One-time single
level thread generation", to minimize the overhead
though hierarchical coarse grain task parallelism
are automatically exploited. In this paper, though
OpenMP API is selected as the thread generation
method because of the portability, this realization
scheme can be used for other thread generation
method.

In the performance evaluation, OSCAR compiler
with XL Fortran compiler gave us scalable speed
up for �ve application programs in Perfect and
SPEC 95fp benchmarks and signi�cant speed-up
compared with native XL Fortran compiler, such as
2.6 times for ARC2D, 1.8 times for SWIM, 3.1 times
for TOMCATV, 1.7 times for HYDRO2D and 1.6
times for MGRID when the 8 processors are used.
In other words, OSCAR Fortran compiler can boost
the performance of XL Fortran compiler, which is
one of the best commercially available loop paral-
lelizing compilers for IBM RS6000 SP 604e High
Node, easily using coarse grain parallelism with low
overhead.

Currently, the authors are planning to evaluate
the proposed coarse grain task parallel processing
scheme on other SMP machines using OpenMP
and data transfer overhead using data localization
scheme to use distributed cache eÆciently.

Acknowledgment

A part of this research has been supported by Japan
Government Millennium Project METI/NEDO
Advanced Parallelizing Compiler Project (http:

//www.apc.waseda.ac.jp) and Waseda University
Grant for Special Research Projects No.2000A-154.

References

[1] M. Wolfe. High Performance Compilers for Paral-
lel Computing. Addison-Wesley, 1996.

[2] U. Banerjee. Loop Parallelization. Kluwer Aca-
demic Pub., 1994.

[3] U. Barnerjee. Dependence Analysis for Supercom-
puting. Kluwer Pub., 1989.

[4] P. Petersen and D. Padua. Static and Dynamic
Evaluation of Data Dependence Analysis. Proc.
Int'l conf. on supemputing, Jun. 1993.

[5] W. Pugh. The OMEGA Test: A Fast and Practical
Integer Programming Algorithm for Dependence
Alysis. Proc. Supercomputing'91, 1991.

[6] M. R. Haghighat and C. D. Polychronopou-
los. Symbolic Analysis for Parallelizing Compliers.
Kluwer Academic Publishers, 1995.

[7] P. Tu and D. Padua. Automatic Array Privati-
zation. Proc. 6th Annual Workshop on Languages
and Compilers for Parallel Computing, 1993.

[8] M. Wolfe. Optimizing Supercompilers for Super-
computers. MIT Press, 1989.

[9] D. Padua and M. Wolfe. Advanced Com-
piler Optimizations for Supercomputers. C.ACM,
29(12):1184{1201, Dec. 1986.

[10] Polaris. http://polaris.cs.uiuc.edu/polaris/.
[11] R. Eigenmann, J. Hoeinger, and D. Padua.

On the Automatic Parallelization of the Perfect
Benchmarks. IEEE Trans. on parallel and dis-
tributed systems, 9(1), Jan. 1998.

[12] L. Rauchwerger, N. M. Amato, and D. A. Padua.
Run-Time Methods for Parallelizing Partially Par-
allel Loops. Proceedings of the 9th ACM Interna-
tional Conference on Supercomputing, Barcelona,
Spain, pages 137{146, Jul. 1995.

[13] M. W. Hall, B. R. Murphy, S. P. Amarasinghe,
S. Liao, , and M. S. Lam. Interprocedural Par-
allelization Analysis: A Case Study. Proceedings
of the 8th International Workshop on Languages
and Compilers for Parallel Computing (LCPC95),
Aug. 1995.

[14] M. W. Hall, J. M. Anderson, S. P. Amarasinghe,
B. R. Murphy, S.-W. Liao, E. Bugnion, and M. S.
Lam. Maximizing Multiprocessor Performance
with the SUIF Compiler. IEEE Computer, 1996.

[15] S. Amarasinghe, J. Anderson, M. Lam, and
C. Tseng. The SUIF Compiler for Scalable Paral-
lel Machines. Proc. of the 7th SIAM conference on
parallel processing for scienti�c computing, 1995.

[16] M. S. Lam. Locallity Optimizations for Parallel
Machines. Third Joint International Conference
on Vector and Parallel Processing, Nov. 1994.

[17] J. M. Anderson, S. P. Amarasinghe, and M. S.
Lam. Data and Computation Transformations for
Multiprocessors. Proceedings of the Fifth ACM
SIGPLAN Symposium on Principles and Practice
of Parallel Processing, Jul. 1995.

[18] X. Martorell, E. Ayguade, N. Navarro, J. Cor-
balan, M. Gozalez, and J. Labarta. Thread
Fork/Join Techniques for Multi-level Parllelism
Exploitation in NUMA Multiprocessors. ICS'99
Rhodes Greece, 1999.

[19] E. Ayguade, X. Martorell, J. Labarta, M. Gonza-
lez, and N. Navarro. Exploiting Multiple Levels of
Parallelism in OpenMP: A Case Study. ICPP'99,
Sep. 1999.

[20] PROMIS. http://www.csrd.uiuc.edu/promis/.

[21] C. J. Brownhill, A. Nicolau, S. Novack, and C. D.
Polychronopoulos. Achieving Multi-level Paral-
lelization. Proc. of ISHPC'97, Nov. 1997.

[22] Parafrase2.
http://www.csrd.uiuc.edu/parafrase2/.

[23] M. Girkar and C. Polychronopoulos. Optimiza-
tion of Data/Control Conditions in Task Graphs.
Proc. 4th Workshop on Languages and Compilers
for Parallel Computing, Aug. 1991.

[24] H. K. et al. A Multi-grain Parallelizing Compila-
tion Scheme on OSCAR. Proc. 4th Workshop on
Languages and Compilers for Parallel Computing,
Aug. 1991.

[25] M. Okamoto, K. Aida, M. Miyazawa, H. Honda,
and H. Kasahara. A Hierarchical Macro-dataow
Computation Scheme of OSCAR Multi-grain
Compiler. Trans. IPSJ, 35(4):513{521, Apr. 1994.

[26] H. Kasahara, M. Okamoto, A. Yoshida, W. Ogata,
K. Kimura, G. Matsui, H. Matsuzaki, and
H.Honda. OSCAR Multi-grain Architecture and
Its Evaluation. Proc. International Workshop
on Innovative Architecture for Future Generation
High-Performance Processors and Systems, Oct.
1997.

[27] H. Kasahara, H. Honda, M. Iwata, and M. Hirota.
A Macro-dataow Compilation Scheme for Hierar-
chical Multiprocessor Systems. Proc. Int'l. Conf.
on Parallel Processing, Aug. 1990.

[28] H. Honda, M. Iwata, and H. Kasahara. Coarse
Grain Parallelism Detection Scheme of Fortran
programs. Trans. IEICE (in Japanese), J73-D-
I(12), Dec. 1990.

[29] H. Kasahara. Parallel Processing Technology.
Corona Publishing, Tokyo (in Japanese), Jun.
1991.

[30] H. Kasahara, H. Honda, and S. Narita. Parallel
Processing of Near Fine Grain Tasks Using Static
Scheduling on OSCAR. Proc. IEEE ACM Super-
computing'90, Nov. 1990.

[31] Advanced Parallelizing Compiler project
http://www.apc.waseda.ac.jp/.

[32] OpenMP: Simple, Portable, Scalable SMP Pro-
gramming http://www.openmp.org/.

[33] L. Dagum and R. Menon. OpenMP: An Industry
Standard API for Shared Memory Programming.
IEEE Computational Science & Engineering, 1998.

[34] H. Kasahara, S. Narita, and S. Hashimoto. OS-
CAR's Architecture. Trans. IEICE (in Japanese),
J71-D-I(8), Aug. 1988.

[35] IBM. XL Fortran for AIX Language Reference.

[36] D. H. Kulkarni, S. Tandri, L. Martin, N. Copty,
R. Silvera, X.-M. Tian, X. Xue, and J. Wang. XL
Fortran Compiler for IBM SMP Systems. AIXpert
Magazine, Dec. 1997.

