Hierarchical Parallel Processing of HEVC Encoder

Hiroki Mikami, Keiji Kimura, Hironori Kasahara
Dept. of Computer Science and Engineering, Waseda University

HEVC/H.265
HEVC is the latest video coding standard and support emerging 4K and 8K videos. Its compression ratio is twice as high as H.264/AVC. However, the computational complexity is ten times higher. This paper proposes parallel processing to accelerate an HEVC encoder.

Parallel Processing of HEVC Encoder

Slice layer parallel processing (assign one slice to one thread)
- Pros: Each slices are completely independent, scalability is good
- Cons: BD-Rate is rapidly increasing or compression quality rapidly goes down

CU layer parallel processing (assign one CU lines to one thread)
- Pros: Degradation of compression quality is relatively low
- Cons: Parallelism of CU layer is limited by number of CU lines
- wave-front parallel processing is needed to satisfy data dependency between CUs
- To minimize synchronize overhead, threads are binded inside one processor package

Complete each weakness by combines CU layer wave-front parallel processing and slice layer parallel processing hierarchically to keep balance between scalability and compression quality.

Evaluation Environment
Hitachi BS2000 (Blade-based SMP Server)
- Intel Octa-core Xeon E7-8830 x 8 (total 64 cores)
- Linux 2.6.32, GCC 4.4.7
- Clustering 4 blades as a SMP by special interconnect

HM-8.0 HEVC Reference Encoder
- Resolution: 1920 x 1080
- QP: 37, Random Access, CU: 32x32, Search Range: 128

Evaluation

- Computation load of processor cores becomes imbalance and speedup ratio saturated at small number of processor cores if motion of video is partially large
- Speedup ratio shows good scalability and impact for quality is relatively small if the motion of video is stable
- Multi-layer parallel processing is important to accelerate encoder with keeping coding efficiency and characteristics of video is effective to scalability of parallel processing