
Oct. 5 - 6, 2006 CoSy Community Gathering 1

C Language Support in OSCAR 
Multigrain Parallelizing Compiler

using CoSy

M. Mase†, K. Kimura†‡, H. Kasahara†‡

† Dept. of Computer Science,
‡ Advanced Chip-Multiprocessor Research Institute,

Waseda University, Japan
http://www.oscar.elec.waseda.ac.jp



Oct. 5 - 6, 2006 CoSy Community Gathering 2

OSCAR Multigrain 
Parallelizing Compiler
– Originally started from 

FORTRAN77
– Achieving outstanding 

results for numerical 
applications

Multi-Processors and Multi-Cores are 
emerging everywhere
Automatic parallelizing compiler becomes 
more and more important
– For ease of application development 

Research Background

– Strong demands for supporting C language
• Very popular especially in embedded area

Performance Evaluation Results
on 16 processor high-end server IBM pSeries 690

115.2s

126.5s18.8s85.8s22.5s37.4s23.2s

16.4s

21.0s
21.5s

16.7s

19.2s

107.4s

184.8s
282.4s 321.4s

105.0s(x1.8)

28.8s(x3.7)

38.5s
(x3.0)

28.9s
(x4.4)

18.8s
(x1.0)

83.9s
(x1.0)

3.5s(x10.7)

13.0s(x1.8)

3.1s(x5.3)

7.1s(x3.0)

3.0s(x7.0)

3.4s(x4.9)

3.8s(x5.1)

22.5s
(x1.0)

282.4s
(x1.0)

321.4s
(x1.0)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

tomcatv swim su2cor hydro2d mgrid applu turb3d apsi fpppp wave5 wupwise swim mgrid applu sixtrack apsi

sp
e

e
d 

u
p 

ra
ti

o
 v

.s
. 

se
qu

e
n

ti
al

 e
xe

c
u

ti
o

n

IBM XL Fortran Ver.8.1

OSCAR compiler

23.1s 38.3s 21.5s 30.3s 35.1s 27.8s 39.5s 22.5s 85.8s 18.8s 126.5s 307.6s 291.2s 279.1s 282.4s 321.4s

SPEC CFP95 SPEC CFP2000

sequential
time

average 3.5 times, max 10.7 times speed up against IBM XL Fortran Ver.8.1



Oct. 5 - 6, 2006 CoSy Community Gathering 3

OSCAR Multigrain Parallelizing 
Compiler

Generating a parallelized code from a 
sequential program
Features
– Multigrain Parallel Processing
– Data Localization
– Data transfer Overlapping
– Power Reduction

Compiler cooperative Multi-core 
architecture
– OSCAR Multi-core Architecture
– OSCAR Heterogeneous 

Multiprocessor Architecture
Also targeting commercial machines
– Sun Ultra80, IBM p550Q, SGI Altix 350
– NEC ARM MPCore, Fujitsu FR1000, Hitachi Renesas SH Multi-core



Oct. 5 - 6, 2006 CoSy Community Gathering 4

Limitation of Loop level Parallelism
– Popular parallelizing technique
– Already reached maturity

Exploitation of three kinds of parallelism
– Coarse grain task : subroutines, loops, 

basic blocks
– Loop level : iterations in a loop
– Near-fine grain : statements in a basic block

Multi-grain Parallel Processing

Parallel Processing
by an Ordinary
Parallelizing Compiler

Par loop iteration
parallel processing

Multigrain Parallel Processing
by OSCAR Compiler

Doall Loop

Sequential 
Loop

Parallelized
Sequential Loop

Near-fine or Coarse grain task
parallel processing

Coarse grain task
parallel processingThe Original 

Sequential Program

Perfor
-mance

１９８０

Transition of a peak performance and an 
effective performance of ＨＰＣ

２０００１９９０

Peek
performance

Effective
performance

The Gap



Oct. 5 - 6, 2006 CoSy Community Gathering 5

Coarse grain task Parallel Processing

1

2 3

4

5

6

7

8

910 11

12

13

14

1

2 3

4

5

6

7

8

9 10

11

12

13

14

Macro-Flow Graph Macro-Task Graph

(Condition for determination of MT Execution)
AND

(Condition for Data access)

Ex. Earliest Executable 
Condition of MT6

MT2 takes a branch
that guarantees MT4 will be executed

OR
MT3 completes execution

Earliest Executable Condition (EEC)

: Data Dependency
: Control flow
: Control Branch

A program is decomposed into Macro-Tasks (MTs)
– Block of Pseudo Assignments (BPA) : Basic Block (BB)
– Repetition Block (RB) : natural loop
– Subroutine Block (SB) : subroutine

Exploitation of parallelism
– Macro-Flow Graph (MFG) : control-flows and data-dependencies
– Macro-Task Graph (MTG) : coarse grain task parallelism



Oct. 5 - 6, 2006 CoSy Community Gathering 6

1

4 56

7

2

3

TLG

1

2_A 2_D 2_C

3_C3_D54

2_B

6

7_A

3_A 3_B

7_B 7_C 7_D

dlg0dlg1 dlg2 dlg3

Exploitation of Data Locality
– for effective use of faster memory (cache or local memory) 

Loop Aligned Decomposition (LAD)
– Target loops are divided into partial loops considering access 

range and local memory size
Consecutive MT scheduling
– Assigning MTs in a DLG to the same processor as 

consecutive as possible
– Shared data can be passed through processor local memory

Data Localization

tim
e

1

2_A

2_B

2_C

2_D

3_A

3_B

3_C

3_D

4

5

6

7_A

7_B

7_C

7_D

tim
e

1

2_A

2_B

3_A

3_B

7_B

2_C

2_D

3_D

7_D

3_C

4

5

6

7_C

7_A

(b) after loop decomposition(a) Before loop decomposition

Loops 2,3,7 are divided 
into 4 smaller loops 
respectively

Loop Align Decomposition

Original execution order
on single processor

Scheduled result
on single processor

•Gray macro-tasks are generated by LAD
•Colored bands show DLG



Oct. 5 - 6, 2006 CoSy Community Gathering 7

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

4 0 0

4 5 0

1 2 4 1 2 4 1 2 4

to m c atv sw im a p p lu

en
er

g
y

[
w /o  S a v ing
w  S av ing

0
500

1000
1500
2000
2500
3000
3500
4000
4500

1 2 4

m p eg2enc

en
er

g
y

[m

- 85.6%

- 42.6%

- 86.7%

- 46.5%

- 74.0%

- 82.7%

- 30.8%

num. of proc. num. of proc.

0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

4 0 0

4 5 0

1 2 4 1 2 4 1 2 4

to m c atv sw im a p p lu

en
er

g
y

[
w /o  S a v ing
w  S av ing

0
500

1000
1500
2000
2500
3000
3500
4000
4500

1 2 4

m p eg2enc

en
er

g
y

[m

- 85.6%

- 42.6%

- 86.7%

- 46.5%

- 74.0%

- 82.7%

- 30.8%

num. of proc. num. of proc.

Power Reduction
Real-time Execution Mode

Scheduled Results F/V Control Power-off ControlScheduled Result F/V Control Power-off Control

Fastest Execution Mode

・ Deadline = Sequential Processing Time x 1.0

Energy Reduction in Real-time Processing



Oct. 5 - 6, 2006 CoSy Community Gathering 8

OSCAR Compiler’s Components
Fortran Frontend

Middle Path
Coarse grain task Parallelization

Loop level Parallelization
Data Localization

Data transfer overlapping
Power Reduction
Static Scheduling

Dynamic Scheduler Generation
Near-fine grain Parallelization

Fortran77

Intermediate Language

OpenMP Fortran C

C Frontend

Intermediate Language

OSCAR API 
Fortran / C
Backend

OpenMP 
Fortran / C
Backend

MPI 
Fortran / C
Backend

OSCAR
Machine

Code
MPI

Fortran / C
OpenMP

Fortran / C
OSCAR API
Fortran / C

OSCAR
Backend

SH
Machine

Code

SH
Backend

UltraSparc
Machine

Code

UltraSparc
Backend

Using CoSy

Evaluating on commercial machines

BackEnd
multi-target code generation

MiddlePath
optimization, parallelization

FrontEnd
parsing a program



Oct. 5 - 6, 2006 CoSy Community Gathering 9

Why CoSy?
For rapid construction of a C compiler
– Avoidance of composing a C language parser from 

scratch

CoSy as an Intermediate Representation (IR) 
converter
– Development of an “engine” for generating OSCAR 

Intermediate Representation

CoSy
– High quality
– IR (CCMIR) is resemble to OSCAR IR
– Useful Loop Analyzer
– Pragma Handling



Oct. 5 - 6, 2006 CoSy Community Gathering 10

OSCAR C Frontend using CoSy
int main()
{
int i, sum=0;
for (i=0; i<1000; i++)

sum+=i;
printf(“%d¥n”, sum);
return 0;

}

%*** System Table ***
file <sum.c>;
language <C>;

%% *** Constant Table ***
...
%% *** Type Table ***
...
% *** main ***
module main <*MAIN*>
{

...
@block1(block)
...

@bb1(block){
$assign(V2,C1);

}:4 % $assign
@loop2(block){
$do{
!cfor(V1,C1,C2,C3);

}
...

// PIR dump in summary format.
TYPES
...
EXPORT PROC main ...
DECLARE

int4: i...
int4: sum...

BEGIN
bb0:
...

begin
sum :=0
goto bb1

bb1:
...

if i^ < 1000 then bb3 ...
...

CoSy OSCAR

Source C program

CoSy Frontend
and some engines

converting symbol tables
CCMIR to OSCAR IR
analyzing loop information
parsing pragma lines
…etc.



Oct. 5 - 6, 2006 CoSy Community Gathering 11

Extraction of canonical shaped loop
– Equivalent to DO loops in FORTRAN

• its iteration number will be determined when the 
execution of the loop starts

– One of important factors for parallelization

Loop Marker of CCMIR
– Extraction of loop structures
– Analyzing induction variables

Loop information
– Loop kind

• while-do, repeat-until
– Loop variable

• loop control variables, loop induction variables
– Important expressions

• init-expr, test-expr, update-expr

Loop Analyzer

for (i = 0; i < 100; i++) {
a[i] = b[i] + x;
c[i] = d[i2] * i;
i2 += 2;

}

loop kind : while-do
control variable : i
induction variable : i2

init-expr : i = 0
test-expr : i < 100
update-expr : i++

Source C Program

Loop Marker

Canonical Shaped Loop



Oct. 5 - 6, 2006 CoSy Community Gathering 12

Preliminary Evaluation
Restriction of Source C Program
– Fortran-like C Program (Restricted C)

• without recursive call
• without pointer and structure

– except for Arguments of Functions
– with some directives

• some hint information for analyzers not implemented yet
Application
– mp3encode 

• Referencing “UZURA”
– http://members.at.infoseek.co.jp/kitaurawa/cgi-bin/wiki.cgi

– mpeg2encode
• Derived from “MediaBench”

On a SMP Workstation
– Sun Ultra80 (4 Ultra SPARC II 450MHz)

• Native parallelizing compiler : Sun Studio 9 C Compiler

Function’s pointer arguments 
mustn’t be aliased
Supplying array shapes for 
pointers to arrays
Some Information for Data 
Localization



Oct. 5 - 6, 2006 CoSy Community Gathering 13

Performance Evaluation Results
on 4 processor workstation Sun Ultra80

About 2 times speed up against Sun Studio 9

0

0.5

1

1.5

2

2.5

1 2 4 1 2 4

PE num

sp
e
e
d 

u
p 

ra
ti
o
 v

s 
S

u
n
 S

tu
di

o
 9

 1
P

E Sun Studio 9 C Compiler

OSCAR Compiler

mp3encode mpeg2encode



Oct. 5 - 6, 2006 CoSy Community Gathering 14

Conclusion
OSCAR Multigrain Parallelizing Compiler
– Multigrain Parallel Processing
– Data Localization
– Data transfer Overlapping
– Power Reduction

C Language Support using CoSy
– Converting CCMIR to OSCAR IR

Preliminary Evaluation on a SMP workstation
– about 2 times speed up against Sun Studio 9

Future Works
– Performance Evaluations on Multi-core Processors
– Performance tuning and Relaxing restrictions



Oct. 5 - 6, 2006 CoSy Community Gathering 15

Acknowledgements
A part of this research has been supported by
– NEDO “Advanced Heterogeneous Multiprocessor”
– STARC “Automatic Parallelizing Compiler Cooperative 

Single Chip Multiprocessor”
– NEDO “Multi core processors for real time consumer 

electronics”


	C Language Support in OSCAR Multigrain Parallelizing Compiler�using CoSy
	Research Background
	OSCAR Multigrain Parallelizing Compiler
	Multi-grain Parallel Processing
	Coarse grain task Parallel Processing
	Data Localization
	Power Reduction
	OSCAR Compiler’s Components
	Why CoSy?
	OSCAR C Frontend using CoSy
	Loop Analyzer
	Preliminary Evaluation
	Performance Evaluation Results�on 4 processor workstation Sun Ultra80
	Conclusion
	Acknowledgements

