C Language Support in OSCAR
Multigrain Parallelizing Compiler
using CoSy

M. Mase'®, K. Kimura'™, H. Kasahara'+*

T Dept. of Computer Science,
T Advanced Chip-Multiprocessor Research Institute,
Waseda University, Japan
http://www.oscar.elec.waseda.ac.|p

Oct. 5 - 6, 2006 CoSy Community Gathering

Research Background

m Multi-Processors and Multi-Cores are
emerging everywhere

m Automatic parallelizing compiler becomes
more and more important

— For ease of application development

Performance Evaluation Results
on 16 processor high-end server IBM pSeries 690

m OSCAR Multigrain ot |
Parallelizing Compiler ~
— Originally started from .~
FORTRANY7
— Achieving outstanding :*
FESU!'[S f_or numerical ol N o o
applications | 1aas '

eeeeeeeeee

average 3.5 times, max 10.7 times speed up against IBM XL Fortran Ver.8.1

— Strong demands for supporting C language

* Very popular especially in embedded area
Oct. 5 - 6, 2006 CoSy Community Gathering 2

OSCAR Multigrain Parallelizing
Compiler
m Generating a parallelized code from a

sequential program e e 9

| . @ Tl
\
m Features
— Multigrain Parallel Processing Conre gﬁﬁ‘jifi‘;‘:}}emﬁon
. . Loop level Parallelization
— Data Localization D Localzion
. ata transter overlapping
— Data transfer Overlapping Power Reducton
— Power Reduction [

m Compiler cooperative Multi-core
arCh IteCtu re Ope MP MPI OSCARAPI

— OSCAR Multi-core Architecture [Backend][Backend][Backend [FB“k/dC FB“k/dC FB“k/dC

— OSCAR Heterogeneous OSCARN, /i maspa Op I OSCARAP
Multiprocessor Architecture CYANGS Mcaiﬁ’?e fore /C Fore /C

m Also targeting commercial machines
— Sun Ultra80, IBM p550Q, SGI Altix 350
— NEC ARM MPCore, Fujitsu FR1000, Hitachi Renesas SH Multi-core

Oct. 5 - 6, 2006 CoSy Community Gathering 3

Multi-grain Parallel Processing

m Limitation of Loop level Parallelism Pertor L et of bl
— Popular parallelizing technique N
— Already reached maturity Peek
performance
m Exploitation of three kinds of parallelism Effective The Gap
— Coarse grain task : s;g::ogltcl)r;iz loops, performance
1980 1990 2000
— Loop level : iterations in a loop
— Near-fine grain : statemerBs inla bastic black
ar foop iteration [Parallelized
Doall Loop parallel processing Sequential Loo

"
...........
............

........... e

.
*
.
.

Sequential
Loop

Near-fine or Coarse grain task
parallel processing

- ~ YT
Parallel Processing Coarse grain task
The Ol’iginal by an Ordinary parallel processing

Sequential Program Parallelizing Compiler Multigrain Parallgl Processing
Oct. 5 - 6, 2006 CoSy Community Gathering by OSCAR Compiler 4

Coarse grain task Parallel Processing
m A program is decomposed into Macro-Tasks (MTs)

— Block of Pseudo Assignments (BPA) : Basic Block (BB)

— Repetition Block (RB) : natural loop

— Subroutine Block (SB) : subroutine
m Exploitation of parallelism

— Macro-Flow Graph (MFG) : control-flows and data-dependencies
— Macro-Task Graph (MTG) : coarse grain task parallelism

(Condition for determination of MT Execution)

— : Data Dependency AN D
: Control flow

"0 : Control Branch (Condition for Data access)

| Ex. Earliest Executable
Condition of MT6
MT2 takes a branch
that guarantees MT4 will be executed
OR
MT3 completes execution

Macro-Flow Graph
Oct. 5 - 6, 2006 CoSy Community Gathering

Macro-Task Graph c

Original execution order
on single processor

awin

Data Localization

m Exploitation of Data Locality

— for effective use of faster memory (cache or local memory)

2A Loop Aligned Decomposition (LAD)

Oct. 5 - 6, 2006

7D (a) Before loop decomposition

consecutive as possible
— Shared data can be passed through processor local memory

*Gray macro-tasks are generated by LAD
*Colored bands show DLG

Loops 2,3,7 are divided
into 4 smaller loops
respectively

CoSy Community Gathering

2B — Target loops are divided into partial loops considering access
range and local memory size

2D m Consecutive MT scheduling
3A — Assigning MTs in a DLG to the same processor as
3B

dig3

(b) after loop decomposition

Scheduled result

on single processor

awi) <

Power Reduction

Fastest Execution Mode Real—time Execution Mode
PG0 PGi PGO0 PG PG0 PG PG0 PG PG0 PGI PGO
1 M2 [T | I T !
MTH | | Vil MT1 | | MT2 MT1 vl | | MT2
VAl Viull | [Vemid Vil Vful MT2
Vimid
MT3 MT3
N Vil || | LVl ||] I Voo /| B | eem ==
Time Time Time Time DeadLine Dead Line 7. Dead Line
Scheduled Result F/V Control Power-off Control Scheduled Results F/V Control Power-off Control

Energy Reduction in Real-time Processing

- 86.7%

4500 —82.7% 450 Ew/o Saving

4000 B 400 - 85.6% Bmw Saving

3500 \ 350 —
E 3000 | _. 300 | - 74.0%
> 2500 [> 250 |
s 2000 | 2 200 | B - 46.5%
® 1500 30-8% ® 50 42.6%

1000 | = v 100 | T~ —~ B

v
o || AR RER
O | | 0 | | | | | | | |
um. JPTOC-Z 4 1 ‘ 2 ‘ 4 Aum. OJ proc.2 ‘ 4 1 ‘ 2 ‘ 4

* Deadline = Sequential Processing Time x 1.0
Oct. 5 - 6, 2006 CoSy Community Gathering 7

OSCAR Compiler’'s Components

OpenMP Fortran

Fortran Frontend

S ——

Intermediate Language

C Frontend

FrontEnd
parsing a program
Using CoSy

Middle Path

Data Localization

Power Reduction
Static Scheduling

Near-fine grain Parallelizat

Coarse grain task Parallelization
Loop level Parallelization

Data transfer overlapping

Dynamic Scheduler Generation

MiddlePath
optimization, parallelization

ion

Intermediate Language

OSCAR
Backend

SH
Backend

UltraSparc

=
=

Lo |

Backend

OpenMP
Fortran/ C

MPI
Fortran/ C

|
Backend

|

OSCAR AP
Fortran/ C
Backend

OSCAR
Machine
Code

SH
Machine
Code

ItraSpar
Machine
Code

Evaluating
Oct. 5 - 6, 2006

OpenMP
Fortran/ C

CoSy Community Gathering

BackEnd
multi-target code generation

OSCAR AP
Fortran/ C

on commercial machines

Why CoSy?

m For rapid construction of a C compiler

— Avoidance of composing a C language parser from
scratch

m CoSy
— High quality
— IR (CCMIR) is resemble to OSCAR IR
— Useful Loop Analyzer
— Pragma Handling

m CoSy as an Intermediate Representation (IR)
converter

— Development of an “engine” for generating OSCAR
Intermediate Representation

Oct. 5 - 6, 2006 CoSy Community Gathering

OSCAR C Frontend using CoSy

int main(Q)

CoSy Frontend
and some engines

// PIR dump in summary format.

TYPES

EXPORT PROC main ...

DECLARE
int4: 1...
int4d: sum...
BEGIN
bb0:
begin
sum :=0
goto bbl
bbl:

ifT 1™ < 1000 then bb3 ...

CoSy
Oct. 5 - 6, 2006

{

int 1, sum=0;

for (i=0; i<1000; i++)

sum+=1;

printf(“%d¥n”, sum);

return O;

Source C program

converting symbol tables
CCMIR to OSCAR IR

analyzing loop information

parsing pragma lines
..etc.

CoSy Community Gathering

%*** System Table ***
file <sum.c>;
language <C>;

%% *** Constant Table ***
%% *** Type Table ***

module main <*MAIN*>

{

@blockl(block)

@bbl(block){

$assign(v2,Cl);

}:4 % $assign

@loop2(block){

$do{
Icfor(vi,C1,C2,C3);

e

OSCAR
10

Loop Analyzer

m Extraction of canonical shaped loop

— Equivalent to DO loops in FORTRAN

* |ts iteration number will be determined when the Source C Program

execution of the loop starts for (i = 0; i < 100; i++) {
— One of important factors for parallelization a[[_i]] = 3[[02]+ X;
cli] =d[i2] *1;
m Loop Marker of CCMIR | Beee

— Extraction of loop structures
— Analyzing induction variables

" l Loop Marker
] LOOp |nf0rmat|on loop kind : while-do
— Loop kind control variable : i
i . induction variable : i2
* while-do, repeat-until init-expr : i = 0
— Loop variable test-expr : i <100
. . i . update-expr : i++
* loop control variables, loop induction variables
— Important expressions @

* init-expr, test-expr, update-expr Canonical Shaped Loop

Oct. 5 - 6, 2006 CoSy Community Gathering 11

Preliminary Evaluation

m Restriction of Source C Program
— Fortran-like C Program (Restricted C)

o \\i : m Function’s pointer arguments
W!thOUt recursive call st be Aliased
* without pointer and structure = Supplying array shapes for
— except for Arguments of Functions pointers to arrays
— with some directives = Some Information for Data
« some hint information for analyzers not implemented yet
m Application
— mp3encode

* Referencing “UZURA”
— http://members.at.infoseek.co.jp/kitaurawa/cgi-bin/wiki.cgi

— mpeg2encode
» Derived from “MediaBench”

m On a SMP Workstation
— Sun Ultra80 (4 Ultra SPARC Il 450MHz)

« Native parallelizing compiler : Sun Studio 9 C Compiler
Oct. 5 - 6, 2006 CoSy Community Gathering 12

Performance Evaluation Results
on 4 processor workstation Sun Ultra80

™
3

O Sun Studio 9 C Compiler
B OSCAR Compiler

N

—h
o

—h

o
(3

speed up ratio vs Sun Studio 9 1PE

o

1 2 4 1 2 4

mp3encode mpeg2encode

PE num

m About 2 times speed up against Sun Studio 9

Oct. 5 - 6, 2006 CoSy Community Gathering

13

Conclusion

m OSCAR Multigrain Parallelizing Compiler
— Multigrain Parallel Processing
— Data Localization
— Data transfer Overlapping
— Power Reduction

m C Language Support using CoSy
— Converting CCMIR to OSCAR IR

m Preliminary Evaluation on a SMP workstation
— about 2 times speed up against Sun Studio 9

m Future Works
— Performance Evaluations on Multi-core Processors

— Performance tuning and Relaxing restrictions
Oct. 5 - 6, 2006 oSy Community Gathering 14

Acknowledgements

m A part of this research has been supported by
— NEDO “Advanced Heterogeneous Multiprocessor”

— STARC “Automatic Parallelizing Compiler Cooperative
Single Chip Multiprocessor”

— NEDO “Multi core processors for real time consumer
electronics”

Oct. 5 - 6, 2006 CoSy Community Gathering 15

	C Language Support in OSCAR Multigrain Parallelizing Compiler�using CoSy
	Research Background
	OSCAR Multigrain Parallelizing Compiler
	Multi-grain Parallel Processing
	Coarse grain task Parallel Processing
	Data Localization
	Power Reduction
	OSCAR Compiler’s Components
	Why CoSy?
	OSCAR C Frontend using CoSy
	Loop Analyzer
	Preliminary Evaluation
	Performance Evaluation Results�on 4 processor workstation Sun Ultra80
	Conclusion
	Acknowledgements

