最先端マルチコアコンパイラと その並列化・低消費電力化性能

早稲田大学

理工学術院コンピュータ・ネットワーク工学科 教授 アドバンストチップマルチプロセッサ研究所 所長

笠原博徳

Prof. Hironori Kasahara Head, Dept. of Computer Science Director, Advanced Chip Multiprocessor Research Institute Waseda University

URL: http://www.kasahara.cs.waseda.ac.jp/

ARM Forum 2006年10月17日(火)

笠原博徳

1980年早稲田大学理工学部電気工学科卒, 1985年同大学院博士課程了(工博), 1983年早稲田大学理工学部助手, 1985年日本学術振興会第1回特別研究員, 1985年カリフォルニア大学バークレーEECS客員研究員. 1986年早稲田大学理工学部電気電子情報工学科専任講師,1988年助教授, 1989年-1990年イリノイ大学 Center for Supercomputing R & D客員研究員, 1997年早稲田大学理工教授, 2003年よりコンピュータ・ネットワーク工学科 1987年IFAC World Congress第1回Young Author Prize, 1997年情処学会坂井記念特別研究賞, 2004年STARC共同研究賞.

く主な学会活動>

情報処理学会:計算機アーキテクチャ研究会主査,論文誌編集委HG主査,

会誌編集委HWG主査,論文誌2001並列処理特集委員長,JSPP2000プログラム委員長等.

ACM : International Conference on Supercomputing(ICS)プログラム委員 ENIAC50周年記念ICS 1996 Program Chair on Software.

IEEE: Computer Society Japan 委員長, 東京支部理事, ICPADS Pub.Chair, SC PC等 その他スーパーコンピュータ・並列処理に関する多くの国際会議プログラム委員.

<各種委員等>

経済産業省:情報政策提言フォーラム(アーキテクチャ/HPC WG主査), ミレニアムプロジェクトIT21"アドバンスト並列化コンパイラ"プロジェクトリーダ, ペタフロップスマシン委員会委員,超先端電子基盤技術委員,

NEDO:研究評価委員、コンピュータ戦略WG委員長、

"リアルタイム 情報家電用マルチコア "プロジェクトリーダ等 文部科学省:地球シミュレータ中間評価委員, JST:科学技術振興調整費GRAPE-DR運営委員,COINS運営委員,さきがけ21領域アドバイザ 内閣府:総合科学技術会議分野別推進戦略(報通信分野)ソフトウェアWG,研究開発基盤WG委員

原研:研究評価委員,計算科学推進センタ第1種客員研究員.朝日新聞:JSEC審査委員. 東京電力学術評価委員、日本EU協調会議科学技術ラウンドテーブル日本代表等。

21世紀はマルチプロセッサ(マルチコア)Everywhere

Image or Earth Simulator

地球シミュレータ:5120プロセッサ· マルチプロセッサスーパーコンピュータ

- ◆ 組み込みプロセッサからスパコンまで
 - 情報家電(コンシューマ機器用)マルチコア カーナビ、携帯電話、ゲーム、デジタルTV、DVD ARM/NEC MPCore,MP211, Sony東芝IBM Cell、 富士通FR1000、松下UniPhier
 - ▶ PC,サーバ
 - Intel Dual-Core Xeon, Core 2 Duo, Montecito AMD Quad and Dual-Core Opteron
 - ▶ WSs, Deskside & Highend サーバ IBM Power4,5,5+, pSeries690(32way), p5 550Q(8 way), Sun Niagara(SparcT1,T2), SGI ALTIX450
 - > スーパーコンピュータ
 - 地球シミュレータ: 40TFLOPS, 2002年3月完成, 5120ベクトルプロセッサ
 - IBM pSeries690: Power4ベース市販サーバ Power5, 現在5+, 今後6,7開発 米国HPCS実効PFLOPSスパコンへ
 - IBM Blue Gene/L: 360TFLOPS 低消費電力CMPベース128Kプロセッサ 1PFLOPS BlueGene/P (2007-8年)
- ◆ アプリケーションソフトの充実,短期間システム開発, 低コスト,低消費電力,高機能化が市場競争力決定
 <例>携帯電話,ゲーム,自動車
 - システムの実質性能、価格性能比、ソフトウェア生 産性の向上を実現する自動並列化コンパイラ協調型 チップマルチプロセッサ、チューニングツール必要

IBM BlueGene/L

Lawrence Livermore National Laboratory2005/

1プロセッサチップ上に2プロセッサ集積

リアルタイム情報家電が市場を牽引

W/W市場規模

MPCore[™](SMP型)

_

CPU2

ARM and NEC Collaboration

MPCore™ブロック図

携帯電話向けアプリケーションプロセッサ: MP211

快適なインターネット・アクセス環境をモバイル機器で

ねらい

- デジタル放送、高性能ダウンロードアプリなどを携帯電話で実現 するための高速低電力アプリケーションプロセッサ ^{成果/革新性}
- オンチップ並列処理(タスク並列型)
 ARM926(200MHz) × 3, DSP(200MHz),
 Graphics Engine, Image Processor,
 Security Engine
- ・マルチコア仮想化ソフトウェア
- ・高性能バスアーキテクチャ
- ・電源制御による低電力化
- デジタル放送のようなリアルタイム 処理をCPU分離し、性能確保
 ダウンロードアプリをCPU分離
 - することによるセキュリティ確保

OSCARマルチコアアーキテクチャ

 自動並列化コンパイラ協調型
 チップマルチプロセッサ (マルチコアプロセッサ)

OSCAR: Optimally Scheduled Advanced Multiprocessor
▶ 携帯電話・DVD・ゲーム・カーナ ビ・デジタルTV等の情報家電
▶ 次世代スーパーコンピュータ

産学連携: STARC (国内企業12社出資の 半導体理工学研究センター) 2000-2004:基礎研究 2004-2006:実用化研究 (富士通,東芝,NEC,ソニー,松下等) 2001-2005: STARC寄附講座SoC設計技術 **産官学連携**: NEDO(経産省) 「大学発事業創出実用化研究開発事業」 2004-2006:先進ヘテロジニアス・マルチ プロセッサ (日立) 経済産業省/NEDOリアルタイム情報 家電用マルチコア(2005.7~ 2008.3)**

**日立,富士通,ルネサス,東芝,松下,NEC

1987 OSCAR(Optimally Scheduled Advanced Multiprocessor)

OSCAR(<u>Optimally</u> <u>Scheduled</u> <u>A</u>dvanced Multiprocessor)

OSCAR PE (Processor Element)

SYSTEM BUS

1987 OSCAR PE Board

OSCAR Memory Space

OSCAR(Optimally Scheduled Advanced Multiprocessor) マルチコア・プロセッサ

マルチコア用コンパイラ研究課題

http://www1.infoc.nedo.go.jp/kaisetsu/ele/el04/el04_p.html

プロセッサ高速化における3大技術課題の解消

1. 消費電力増大による速度向上の鈍化

- コンパイラによる低消費電力制御機能を用いたアプリケーション内でのきめ細かい周波数・ 電圧制御・電源遮断により消費電力低減
- 2. 半導体集積度向上(使用可能トランジスタ数 増大)に対する速度向上率の鈍化
 - 知粒度タスク並列化、ループ並列化、近細粒 度並列化によりプログラム全域の並列性を利 用するマルチグレイン並列化機能により、従 来の命令レベル並列性より大きな並列性を抽 出し、複数マルチコアで速度向上

メモリウオール問題

コンパイラによる<u>ローカルメモリへのデータ分割配置、DMAコントローラによるタスク実行と</u> <u>オーバーラップしたデータ転送</u>によりメモリア クセス・データ転送オーバーヘッド最小化

コンパ[°]イラ協調型先進ヘテロシ[゙]ニアス・マルチプロセッサ (AHMP)

- 多種類の計算エンジン(プロセッサ)を1チップに集積したSoC アーキテクチャ
- プログラムの並列性を抽出し、各プロセッサの特徴に適したタ スクの分割と配置を行う並列化コンパイラ

自動ベクトル化

最内側ループのLoop Distribution及びベクトル命令への置換

(b) (a)のデータ依存グラフ

Doall ループ

Scalar Privatization 併用

real a(n),c(n)	real a(n),c(n)		
do i=1,n	doall i =1,n		
x=a(i)*2.0	real x		
c(i)=x+1.0	x=a(i)*2.0		
end do	c(i)=x+1.0		
	end doall		

Doall可能なループの例

Doallの記述例

Generation of coarse grain tasks

Macro-tasks (MTs)

- **↗** Block of Pseudo Assignments (BPA): Basic Block (BB)
- **↗** Repetition Block (RB) : natural loop
- **↗** Subroutine Block (SB): subroutine

Earliest Executable Condition Analysis for coarse grain tasks (Macro-tasks)

A Macro Task Graph

Automatic processor assignment in 103.su2cor

- Using 14 processors
 - Coarse grain parallelization within DO400 of subroutine

MTG of Su2cor-LOOPS-DO400 ■ Coarse grain parallelism PARA_ALD = 4.3

Data-Localization Loop Aligned Decomposition

- Decompose multiple loop (Doall and Seq) into CARs and LRs considering inter-loop data dependence.
 - Most data in LR can be passed through LM.
 - LR: Localizable Region, CAR: Commonly Accessed Region

An Example of Data Localization for Spec95 Swim

(a) An example of target loop group for data localization

Data Layout for Removing Line Conflict Misses by Array Dimension Padding

Declaration part of arrays in spec95 swim

before padding

after padding

PARAMETER (N1=513, N2=<u>513</u>)

 $COMMON \ U(N1,N2), \ V(N1,N2), \ P(N1,N2),$

- * UNEW(N1,N2), VNEW(N1,N2),
- 1 PNEW(N1,N2), UOLD(N1,N2),
- * VOLD(N1,N2), POLD(N1,N2),
- 2 CU(N1,N2), CV(N1,N2),
- * Z(N1,N2), H(N1,N2)

COMMON U(N1,N2), V(N1,N2), P(N1,N2),

* UNEW(N1,N2), VNEW(N1,N2),

PARAMETER (N1=513, N2=544)

- 1 PNEW(N1,N2), UOLD(N1,N2),
- * VOLD(N1,N2), POLD(N1,N2),
- 2 CU(N1,N2), CV(N1,N2),
- * Z(N1,N2), H(N1,N2)

APC Compiler Organization

Variety of Shared Memory Parallel machines

Image of Generated OpenMP Code forCentralizedHierarchical Multigrain Parallel ProcessingCode

SECTIONS

SECTION

SECTION

1st layer

IBM pSeries690 RegattaH

• Up to 16 Power4: 32 way SMP Server

- L1(D): 64 KB (32KB/processor, 2 way assoc.), L1(I): 128 KB (64KB/processor, Direct map)
- L2 : 1.5 MB (shared cache with 2 procs., 4~8 way assoc.)
- L3 : 32 MB (external, 8 way assoc.) [x 8 = 256 MB]

Four 8-way MCM Features Assembled into a 32-way pSeries 690

http://www-1.ibm.com/servers/eserver/pseries/hardware/whitepapers/p690_config.html

IBM @server pSeries690 Configuring for Performance

ミレニアムプロジェクトIT21 経済産業省/NEDO「アドバンスト並列化コンパイラ」

ンからも評価されており、米国を凌駕する並列コンパイラ技術を構築した」

SGI Altix 3700

16 Itanium 2 (1.3GHz) SMP server L1 16KB(4way), L2 256KB(8way), L3 3MB(12way)

Sun V880サーバ上性能 データローカライゼーション+キャッシュプリフェッチ

Performance of OSCAR compiler on SUN V880 (8 Ultra SPARC III Cu 1050MHz)

Performance on IBM pSeries690 Power4 24 processors SMP server

• OSCAR compiler gave us 4.82 times speedup against XL Fortran Ver.8.1

IBM p5-550Q server (1.5 or 1.65 GHz)

Performance on IBM p5 550 POWER5+ 8 processors SMP server

- OSCAR compiler
 - 2.74 times speedup against XL Fortran Ver.10.1 without SMT
 - 2.78 times speedup against XL Fortran Ver.10.1 with SMT

Performance on ARM/NEC MPCore 4 processors SMP embedded multicore

• OSCAR compiler gave us 3.48 times speedup against sequential execution

周波数電圧(FV)制御と電源制御による低消費電力化

FV制御

処理ユニット負荷不均衡時の電
 源・周波数電圧制御
 スケジューリング結果

デッドライン制約を考慮した電源・周波数電圧制御

OSCAR(<u>Optimally Scheduled Advanced Multiprocessor</u>)

評価パラメータ設定

- 90nm、400 MHz を想定
- 通常電圧:1.1 V
- 消費電力(CPUのみ、動作): 220 mW
- 消費電力(CPUのみ、リーク): 2.2 mW
- F-V状態

状態	FULL	MID	LOW	OFF
周波数	1	1/2	1/4	0
電圧	1	0.87	0.71	0
動作エネルギー	1	3/4	1/2	0
リーク電流	1	1	1	0

- F-V状態遷移時の遅延
 - 動作状態(FULL, MID, LOW)間の遷移: 100 µ s
 - ON/OFF 間の遷移:200µs
- コンパイラ内での電力見積もり結果を算出
- •Spec95FP tomcatv, swim, applu を評価

最速実行モードの速度向上率

最速実行時モード時のコンパイラ制御による 消費エネルギー削減

・デッドライン = 逐次処理時間 × 1.0 リーク電力1%

コンパイラ制御によるリアルタイム処理時の 低消費電力化(4core,リーク10%)

リアルタイム実行時のコンパイラ制御 による消費エネルギー削減

リーク電力を変化させたコンパイラ 消費電力制御手法の効果

・デッドライン = 逐次処理時間 × 0.5 ・ 4 プロセッサコア

まとめ

- ▶ 今後、ゲーム、カーナビ、デジタルTV、DVDなどの情報 家電から、自動車、スーパーコンピュータまでの幅広い分 野でコンパイラ協調型・低消費電力・高実効性能マルチコ アプロセッサの重要度が高まる。
- ▶ 自動並列化コンパイラは下記実現のために必須
 - ▶ 優れた価格性能、短ハード・ソフト開発期間、低消費電力
 - ▶ 高ソフトウェア生産性、集積度向上にスケーラブルな性能向上

▶ コンパイラによる低消費電力制御

- ▶ MPEG2エンコードにおいて逐次処理時間をデッドラインとした場合、4コ ア使用時に82.7%消費エネルギーを削減(リーク電力1%時)
- MPEG2エンコード、SPC95CFP TOMCATV、SWIM、APPLU において逐次処理時間の1/2をデッドラインとし、リーク電力を1%から50%まで変化させた場合、4コア時で62.0~49.6%消費エネルギーを削減

➢ MPCore上でのマルチグレイン並列処理

▶ SPEC95CFPベンチマーク(データサイズ縮小版)7本を用いた場合 逐次処理に対して平均3.48倍の速度向上