
Performance Evaluation of Compiler Controlled Power Saving Scheme

Jun Shirako†, Munehiro Yoshida†, Naoto Oshiyama†, Yasutaka Wada†,
Hirofumi Nakano†, Hiroaki Shikano†,††, Keiji Kimura†, Hironori Kasahara†

†Dept. of Computer Science, Waseda University
3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan

††Central Research Laboratory, Hitachi, Ltd.
1-280, Higashi-Koigakubo, Kokubunji-shi, Tokyo 185-8601, Japan

{shirako,munehiro,oshiyama,yasutaka,hnakano,shikano,kimura,kasahara}@oscar.elec.waseda.ac.jp

Abstract

Multicore processors, or chip multiprocessors, which
allow us to realize low power consumption, high effec-
tive performance, good cost performance and short hard-
ware/software development period, are attracting much at-
tention. In order to achieve full potential of multicore pro-
cessors, cooperation with a parallelizing compiler is very
important. The latest compiler extracts multilevel paral-
lelism, such as coarse grain task parallelism, loop paral-
lelism and near fine grain parallelism, to keep parallel exe-
cution efficiency high. It also controls the voltage and clock
frequency of processors carefully inside an application pro-
gram to reduce energy comsunption. This paper evaluates
performance of compiler controlled power saving scheme
which has been implemented in OSCAR multigrain paral-
lelizing compiler. The developed power saving scheme real-
izes voltage/frequency control and power shutdown of each
processor core during coarse grain task parallel process-
ing. In the performance evaluation, when it is assumed that
static power is one-tenth of dynamic power, OSCAR com-
piler with the power saving scheme achieved 61.2 percent
energy reduction for SPEC CFP95 applu without perfor-
mance degradation on 4 processors and 87.4 percent energy
reduction for mpeg2encode, 88.1 percent energy reduction
for SPEC CFP95 tomcatv and 84.6 percent energy reduc-
tion for applu with the real-time deadline constraint on 4
processors.

1 Introduction

Multicore processors which integrate multiple proces-
sor cores are attracting much attention, since they allow
us to realize low power consumption, high effective perfor-
mance, good cost performance and short hardware/software

development period, with compiler supports. For exam-
ple, Fujitsu FR-V[25], ARM MPCore[3], IBM, SONY
and Toshiba Cell[5], Intel Xeon dual-core[21] and IBM
Power5+[13] have been developed for consumer electron-
ics, PCs, servers and so on. In order to achieve efficient
parallel processing on multicore processors, cache and lo-
cal memory optimization to cope with memory wall prob-
lem and minimization of data transfer among processors us-
ing DMAC (Direct Memory Access Controller) are neces-
sary, in addition to the extraction of parallelism from an ap-
plication program. There have been a lot of researches to
extract parallelism for multicore processors in the areas of
loop parallelizing compilers [22, 4, 7]. However, the loop
parallelization techniques are almost matured and new gen-
eration of parallelization techniques like multi-grain par-
allelization are required to attain further speedup. There
are a few compilers trying to exploit multiple levels of
parallelism, for example, NANOS compiler[6] extracts the
multi-level parallelism including the coarse grain task par-
allelism by using extended OpenMP API. Also, OSCAR
multigrain parallelizing compiler [9, 8, 14] extracts coarse
grain task parallelism among loops, subroutines and basic
blocks and near fine grain parallelism among statements in-
side a basic block, in addition to the loop parallelism. Fur-
thermore, OSCAR compiler automatically determines the
suitable number of processors for each part of a program,
considering processing overhead and the global cache mem-
ory optimization over different loops.

So far, improving processing performance has been one
of the most important problems. However, recently, re-
duction of power consumption is getting important. For
the power saving, various methods by hardware and OS
have been proposed. Adaptive Processing[1] estimates the
workload of computing resources using counters for cache
misses and instruction queues and powers off unnecessary
resources. Online Methods for Voltage and Frequency Con-

yajima
テキストボックス
Proc. of 20th ACM International Conference on Supercomputing Workshop on Advanced Low Power Systems (ALPS2006), Cairns, Australia, July 2006

BPA

RB

SB

Program

Near fine grain parallelism

Loop level parallelism

Coarse grain parallelism

Coarse grain parallelism

all system 1st layer 2nd layer 3rd layer

Near fine grain parallelism
in loop body

BPA
RB
SB

BPA
RB
SB

BPA
RB
SB

BPA
RB
SB

BPA
RB
SB

BPA
RB
SB

Figure 1. Hierarchical Macro Task Definition

trol [26] settles on the fitting voltage and frequency for each
domain of processors using instruction issue queue occu-
pancies as feedback signals.

This paper describes a compiler controlled power sav-
ing scheme for a multicore processor, which realizes volt-
age/frequency (V/F) control and power shutdown under the
constraints of the minimum time execution or real-time ex-
ecution with deadline.

2 Multigrain parallel processing

The developed power saving scheme in OSCAR
compiler[11, 12] is mainly used with the coarse grain task
parallelization in the multigrain parallel processing. This
section describes the overview of the coarse grain task par-
allel processing.

2.1 Generation of macro-tasks [9, 8, 14]

In multigrain parallelization, a program is decomposed
into three kinds of coarse grain tasks, or macro-tasks, such
as block of pseudo assignment statements (BPA) repetition
block (RB), subroutine block (SB)[14]. Macro-tasks can
be hierarchically defined inside each un-parallelizable rep-
etition block, or sequential loop, and a subroutine block as
shown in Figure 1. Repeating the macro-task generation
hierarchically, the source program is decomposed into the
nested macro-tasks as in Figure 1.

2.2 Extracting coarse grain task paral-
lelism

After generation of macro-tasks, the data dependency
and the control flow among macro-tasks are analyzed in
each nested layer, and hierarchical macro flow graphs
(MFG) representing control flow and data dependencies
among macro-tasks are generated [9, 8, 14]. Then, to ex-
tract coarse grain task parallelism among macro-tasks, Ear-
liest Executable Condition analysis [9, 8, 14] which ana-
lyzes control dependencies and data dependencies among

8PE

PG0(4PE) PG1(4PE)

PG1-0(2PE) PG1-1(2PE)2nd layer

1st layer

PG0-0 PG0-1 PG0-2 PG0-3

0th layer

Figure 2. Hierarchical processor grouping

macro-tasks simultaneously is applied to each Macro flow
graph. Earliest Executable Conditions are the conditions on
which macro-task may begin its execution earliest. By this
analysis, a macro-task graph (MTG)[9, 8, 14] is generated
for each macro flow graph. Macro-task graph represents
coarse grain parallelism among macro-tasks.

2.3 Hierarchical Processor grouping

To execute hierarchical macro-task graphs efficiently, the
compiler groups processors hierarchically. This grouping
of processor elements (PEs) into Processor Groups (PGs) is
performed logically, and macro-tasks are assigned to pro-
cessor groups in each layer. Figure 2 shows an example of
a hierarchical processor groups. For execution of a macro-
task graph in the 1st nest level, or 1st layer, the 8 processors
are grouped into 2 processor groups each of which has 4
processor elements. This is represented as (2PGs, 4PEs).
The macro-task graph in the 1st nest level is processed by
the 2PGs. For each macro-task graph in the 2nd nest level,
4 processors are available. In the Figure 2, the grouping of
(4PGs, 1PE) is chosen for the left PG and (2PGs, 2PEs) is
chosen for the right PG.

2.4 Automatic determination scheme of
parallelizing layer

In order to improve the performance of multigrain par-
allel processing, it is necessary to schedule the tasks on the
macro-task graph with the extracted parallelism to proces-
sors the grouped processor layer. OSCAR compiler with the
automatic parallelized layer determination scheme [23, 24]
estimates the parallelism of each macro-task graph and de-
termine the suitable (PGs, PEs) grouping. This scheme de-
termines the suitable number of processors executing each
macro-task, considering trade-off between parallelization
and scheduling and data transfer overhead. Therefore, OS-
CAR compiler doesn’t assign tasks to the excessive proces-
sors to reduce parallel processing overhead.

2.5 Macro-Task Scheduling

In the coarse grain task parallel processing, a macro-task
in the macro-task graph is assigned to a processor group. At
this time, static scheduling or dynamic scheduling is chosen

CMPm

CSM / L2 Cache

PE0 PE1
PEn

Intra-chip connection network

(Multiple Buses, Crossbar, etc)

DSM

LDM/
D-cacheLPM/

I-Cache

CMP (chip multiprocessor 0)0

Inter-chip connection network (Crossbar, Buses, Multistage network, etc)

CSMj

CSM

I/O

CMPk

CPU

DMAC

I/O
DevicesI/O

Devices

Network Interface

CSM : central shared mem.

DSM : distributed shared mem.

LDM : local data mem.

LPM : local program mem.

Figure 3. OSCAR multicore processor

for each macro-task graph. If a macro-task graph has only
data dependencies and is deterministic, the static scheduling
is selected. In this case, the compiler schedules macro-tasks
to processor groups. The static scheduling is effective since
it can minimize data transfer and synchronization overhead
without runtime scheduling overhead. If a macro-task graph
is un-deterministic by conditional branches among coarse
grain tasks, the dynamic scheduling is selected to handle the
runtime uncertainties. The dynamic scheduling routines are
generated by the compiler and inserted into a parallelized
program code to minimize scheduling overhead.

This paper proposes the power reduction static schedul-
ing scheme for the determinable macro-task graphs.

In the following sections, MT represents macro-task,
MTG is macro-task graph, PG is processor group, PE is pro-
cessor element, BPA is block of pseudo assignment state-
ments, RB is repetition block and SB is subroutine block.

3 Compiler control power saving scheme

The multigrain parallel processing can take full advan-
tage of multi level parallelism in a program. However, there
isn’t always enough parallelism in all part of a program for
available resources. In such a case, shutting off the power
supply to the idle processors, to which tasks are not as-
signed, can reduce static and dynamic power consumption.
Also, execution at lower voltage and frequency may reduce
the total energy consumption in real time processing with
the deadline constraint. The compiler controlled power sav-
ing scheme realizes the following two modes of power sav-
ing. The first is the fastest execution mode that doesn’t ap-
ply the power reduction scheme to the critical path of a pro-
gram to guarantee the fastest processing speed. The second
is real-time processing mode with deadline constraint that
minimizes the total energy consumption within the given
deadline.

Table 1. The rate of frequency, voltage, dy-
namic energy and static power

state FULL MID LOW OFF
frequency 1 1/2 1/4 0
voltage 1 0.87 0.71 0

dynamic energy 1 3/4 1/2 0
static power 1 1 1 0

3.1 Target model for the power saving
scheme

In this paper, it is supposed that the target multicore pro-
cessors have the following functions with the hardware sup-
ports like OSCAR multicore processor shown in Figure 3.
The OSCAR (Optimally Scheduled Advanced Multiproces-
sor) architecture has been proposed to support optimization
of multigrain parallelizing compiler [15, 9, 8], especially
static and dynamic task scheduling [17, 15, 16]. In the
OSCAR architecture, simple processor cores having local
and/or distributed shared memory both of which are dou-
ble mapped to the global address space so that can be ac-
cessed by remote processor cores DTC (Data Transfer Con-
troller), or DMAC, are connected by interconnection net-
work like multiple busses or cross bar switches to control
shared memory (CSM) [17, 15, 16, 19]. In addition to the
traditional OSCAR architecture, in this paper, the following
power control functions are supported.

• The frequency for each processor can be changed in
several levels separately.

• The voltage can be changed with the frequency.

• Each processor can be powered on and off individually.

Here, each memory, DMAC and Network are not the target
of the power saving scheme described in this paper. There
are a lot of approaches for voltage and frequency (V/F)
control. The developed power saving scheme assumes fre-
quency changes discretely, and the optimal voltage is fixed
for each frequency. Table 1 shows an example of the com-
binations of voltage, dynamic energy and static power at
each frequency, which supposes FULL is 400MHz, MID is
200MHz and LOW is 100MHz at 90nm technology. For the
table, dynamic energy rate for each frequency is the rate of
energy consumption to the energy consumption at FULL.
The power supply is shut off completely at OFF, and then
the static power becomes 0. These parameters and the num-
ber of V/F states can be changed, according to architectures
and technology. This scheme also considers the state tran-
sition overhead that is given for each state.

PG0 PG1 PG2
MT1

MT2 MT3
MT4

MT5 MT6
MT7

MT8

time Given Dead Line

Margin

Phase 1

Phase 2

Phase 3

Figure 4. static scheduled MTG

3.2 Target MTG for the power control
scheme

OSCAR compiler selects dynamic scheduling or static
scheduling for each MTG, as to whether there is runtime un-
certainty like conditional branches in the MTG. The devel-
oped scheme can be only applied to static scheduled MTGs.
However, separating the parts without branches from dy-
namic scheduled MTG, this scheme is applied for the static
scheduling parts of MTGs. In the static scheduling at the
compile time, execution cost and consumed energy of each
MT is estimated. The cost and energy at each frequency
level like “FULL” and “MID” can be calculated using the
previously prepared parameter table for each target mul-
ticore processor of each instruction cost embedded in the
compiler.

3.3 Deadline constraints for target MTG

The developed scheme determines suitable voltage and
frequency for each MT on a MTG based on the result of
static task assignment. In other words, the developed power
saving scheme is applied for the static task schedule like
Figure 4 generated by static task scheduling algorithms to
minimize processing time including data transfer overhead,
such as CP/DT/MISF, DT/CP, ETF/CP, which have been
used for a long time in OSCAR compiler. Figure 4 shows
MTs 1, 2 and 5 are assigned to PG0, MTs 3 and 6 are as-
signed to PG1, MTs 4, 7 and 8 are assigned to PG2 by the
static scheduling algorithms. The best schedule is chosen
among different schedules generated by the different heuris-
tic scheduling algorithms. In Figure 4, edges among tasks
show data dependence.

First, the following is defined forMTi, in order to es-
timate the execution time of the target MTG to which the
developed scheme is applied.

Ti : execution time ofMTi after V/F control
Tstarti

: start time ofMTi

Tfinishi
: finish time ofMTi

At the beginning of the developed scheme,Ti is not yet

PG0 PG1 PG2
MT1

MT2 MT3

MID
MT4

MT5

MID MT6 MT7

MT8
time

PG3
idle (1) idle (1)

idle (2) idle (2)

idle (3)

Figure 5. Result of V/F control

fixed. The start time of the target MTG is set to 0. IfMTi

is the first macro-task executed by a PG and has no data de-
pendent predecessor.Tstarti

andTfinishi
are represented

as shown below.
Tstarti

= 0
Tfinishi

= Tstarti
+ Ti = Ti

For instance, theMT1 is the entry node of MTG, so it
is the first and has no data dependent predecessor. Then,
Tstart1 = 0, Tfinish1

= T1. In other case, the previous
macro-task which is assigned to the same PG asMTi is rep-
resented asMTj. The data dependent predecessors ofMTi

are defined as{MTk, MTl, ...}. Then,MTi starts when
MTj, MTk, MTl, ... finish.

Tstarti
= max(Tfinishj

, Tfinishk
, Tfinishl

, ...)
Tfinishi

= Tstarti
+ Ti

According to these rules,the finish time ofMT8 which is the
exit node is represented asTfinish8

= T1 +T8+max(T2 +
T5, T6 + max(T2, T3), T7 + max(T3, T4))
The finish time of exit node is generally represented by

Tfinishexit
= Tm+Tn+...+max1(...)+max2(...)+...

The start time of the entry node is 0, thereforeTfinishexit

expresses the execution time of the target MTG, defined as
TMTG. The given deadline for the target MTG is defined
asTMTG deadline. Then, the next condition should be sat-
isfied.

TMTG ≤ TMTG deadline

The developed scheme determines suitable clock frequency
for MTi to satisfy the condition.

3.4 Voltage / frequency control

This paragraph describes how to determine the voltage
and frequency to execute each MT using next conditions.
The execution time ofMTi is Ti, the execution time of tar-
get MTG isTMTG, the real-time deadline of the target MTG
is TMTG deadline, then

TMTG = Tm + Tn + ... + max1 + max2 + ... - - - (a)
TMTG ≤ TMTG deadline - - - (b)

For sake of simplicity, the MTs corresponding to each term
of the expression (a) such asTm, Tn, ..., max1, max2, ...
are called Phase. Each term represents the different part
of TMTG. Therefore, the different Phase is not executed in

Table 2. dynamic/static Power and overhead
dynamic power 220[mW]

static power 2.2, 22, 66, 110[mW]
overhead of V/F control 0.1[ms]

overhead of power shutdown 0.2[ms]

parallel on any account as shown in Figure 4. The following
parameters forPhasei at frequencyFn are defined.

Tschedi
(Fn) : scheduling length atFn

Energyi(Fn) : energy consumption atFn

Tschedi
(Fn) represents the execution time when the whole

Phasei is processed atFn. Tschedi
(FULL) is the mini-

mum value of the term in the expression (a).Energyi(Fn)
expresses the total energy consumption asPhasei is ex-
cuted atFn.

Here, it is considered to change frequency from
Fn to Fm. The scheduling length is increased from
Tschedi

(Fn) to Tschedi
(Fm). The energy is decreased

from Energyi(Fn) to Energyi(Fm). Using these values,
Gaini(Fm) is defined as

Gaini(Fm) = −Energyi(Fm)−Energyi(Fn)
Tschedi

(Fm)−Tschedi
(Fn)

Gaini(Fm) represents reduction rate of energy on schedul-
ing length whenFn is changed intoFm. Therefore, if the
increases of scheduling length are same, the more energy re-
duction can be expected by applying V/F control toPhasei

with largerGaini(Fm).
Next, to estimate the margin of the target MTG, the

minimum value ofTMTG is calculated as the summation
of Tschedi

(FULL). Then, using this minimum value and
TMTG deadline, the marginTMTG margin is defined as

TMTG margin = TMTG deadline −
∑

Tschedi
(FULL)

As the target MTG must finish in minimum execution time,
TMTG margin = 0, then each Phase has to be executed at
FULL. When TMTG margin > 0, the developed scheme
turns down the voltage and frequency of each Phase, ac-
cording toGaini(Fm). If a Phase has a single MT, the
frequency of the MT is the same as the Phase. If a Phase
includes some MTs and corresponds to the max term, the
developed scheme also defines Phases for each argument
of the max, and then determines clock frequency to exe-
cute these Phases. The algorithm to determine frequency
for each Phase and MT is described in [11, 12].

3.5 Power supply control

Next, power supply control to reduce unnecessary en-
ergy consumption including static power consumption by
idle processors is applied. The idle time occurs, when a PG
(processor group) is waiting for other PGs to execute the
MTs (1), finished all scheduled MTs (2) or has no MTs (3).

0
0.5
1
1.5
2
2.5
3
3.5
4
4.5

1CPU 2CPUs 4CPUs

mpeg2enc tomcatvapplu
benchmark

sp
e

e
d

u
p

 r
a
ti

o

w/o saving
w saving

1CPU 2CPUs 4CPUs 1CPU 2CPUs 4CPUs

Figure 6. Speedup in the fastest mode

The gray parts of Figure 5 are the idle in each case. The
power of the PG is turned off, if the idle time is longer than
the frequency transition overhead and the energy becomes
lower by power shutdown considering the overhead.

3.6 Applying power saving scheme to in-
ner MTG

If a MTi includes aMTGi inside, it may be more ef-
fective to control eachMTi j in MTGi than to process the
whole MTi at the same clock frequency. Therefore, the
deadline forMTGi is defined asTMTGi deadline, which is
given byTi. Then,MTGi is applied the power saving con-
trol described in paragraph 3.4 and 3.5. Comparing both
case to execute the wholeMTi at the same frequency and
case to apply the power saving control toMTGi, the more
effective one is selected.

4 Performance evaluation

This section describes the performance of OSCAR
multigrain parallelizing compiler with the compiler con-
trolled power saving scheme. The evaluation was per-
formed by using the static scheduler in the compiler. For
this evaluation, the parameters such as frequencies, volt-
ages, dynamic energies, and static powers shown in Ta-
ble 1 were used. In this paper, only energy for proces-
sors was evaluated. The state transition overhead of V/F
control and power shutdown, dynamic and static power is
shown in Table 2. The dynamic power at FULL frequency
was measured by using Wattch[2]. Cooperative Voltage
Scaling[18] was referenced to determine the parameters like
the transition overhead, attribute of voltage/frequency and
dynamic power at MID and LOW frequency. Static power
is set to 2.2[mW] (1% of dynamic power), 22[mW] (10%
of dynamic power), 66[mW] (30% of dynamic power) or
110[mW] (50% of dynamic power), supposing various type
of multicore processors from low power oriented multi-
cores to high performance multiprocessors. In this evalu-

0

500

1000

1500

2000

2500

1 4 1 2 4 1 2 4 1 2 4

rate of static power on dynamic power

e
n

e
rg

y
[m

J
]

w/o saving
w saving

2
1% 10% 30% 50%

Figure 7. Energy of mpeg2encode (fastest)

0

50

100

150

200

250

1 2 4 1 2 4 1 2 4 1 2 4

1% 10% 30% 50%

e
n

e
rg

y
[
J]

w/o saving
w saving

rate of static power on dynamic power

Figure 8. Energy of applu (fastest)

ation, MediaBench mpeg2encode which was rewritten in
Fortran[20], SPEC95 CFP applu and tomcatv were used.
For applu, inline expansion and loop aligned decomposi-
tion for the data localization[10] were applied. Also, the
main loop in applu was divided into the static part without
conditional branch and the dynamic part with branches, in
order to apply the power saving scheme.

4.1 Performance in the fastest execution
mode

Figure 6 shows the speedup ratio of each program for 1,
2 and 4 processors in the fastest execution mode, when it is
assumed static power is equal to 1% of dynamic power. The
left bars represent the results of OSCAR compiler without
the power saving scheme, the right bars show the results
of OSCAR compiler using the compiler controlled power
saving scheme. As shown in Figure 6, there is no perfor-
mance degradation by using the power saving scheme in
the fastest execution mode. When static power was changed
to 22[mW] (10% of dynamic power), 66[mW] (30% of dy-
namic power) or 110[mW] (50% of dynamic power) assum-
ing high performance processors, there were also no per-
formance losses. Figure 7, 8 and 9 show the total energy
consumption of mpeg2encode, applu and tomcatv for 1, 2,
and 4 processors, changing the rate of static power on dy-

0

20
40

60
80

100

120

140

160

1 2 4 1 2 4 1 2 4 1 2 4

en
e
rg

y
[J

]

w/o saving
w saving

rate of static power on dynamic power
1% 10% 30% 50%

Figure 9. Energy of tomcatv (fastest)

Table 3. Energy reduction for 4 CPUs(fastest)

program static w/o saving w saving reduction
mpeg2 1 % 1336[mJ] 973[mJ] 27.2 %

10 % 1455[mJ] 1071[mJ] 26.4 %
30 % 1720[mJ] 1278[mJ] 25.7 %
50 % 1985[mJ] 1476[mJ] 25.6 %

applu 1 % 156[J] 58.5[J] 62.4 %
10 % 170[J] 65.9[J] 61.2 %
30 % 201[J] 81.9[J] 59.2 %
50 % 231[J] 95.1[J] 58.9 %

tomcatv 1 % 94.8[J] 90.4[J] 4.66 %
10 % 103[J] 98.4[J] 4.65 %
30 % 122[J] 116[J] 4.65 %
50 % 141[J] 134[J] 4.64 %

namic power to 1%, 10%, 30% or 50%. In mpeg2encode
and applu, the power saving scheme using 2 or 4 proces-
sors reduces the energy consumption at each rate of static
power. These applications have sequential parts which can’t
be parallelized, and then there is a certain amount of pro-
cessor idle time. The power saving scheme applied V/F
control and power shutdown, using this idle time. The de-
veloped scheme reduced the consumed energy by 5.5 %
(from 1138[mJ] down to 1075[mJ]) for 2 processors, 26.4
% (from 1455[mJ] down to 1071[mJ]) for 4 processors in
mpeg2encode and 35.4 % (from 101[J] down to 65.2[J]) for
2 processors, 61.2 % (from 170[J] down to 65.9[J]) for 4
processors in applu, assuming the rate of static power on
dynamic power is 10 %. The energy reduction rate for 4
processors changing static power is shown in Table 3.

On the other hand, tomcatv has large parallelism to run
all processors almost every time during the program execu-
tion. Therefore, all processors must execute at full speed to
attain the minimum execution time. The parallel execution
time of tomcatv with 4 processors is about one quarter of

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

1 2 4 1 2 4 1 2 4 1 2 4

e
n

e
rg

y
[m

J
]

w/o saving
w saving

rate of static power on dynamic power
1% 10% 30% 50%

Figure 10. Energy of mpeg2encode (deadline)

0

100

200

300

400

500

600

1 2 4 1 2 4 1 2 4 1 2 4

e
n

e
rg

y
[J

]

w/o saving
w saving

rate of static power on dynamic power
1% 10% 30% 50%

Figure 11. Energy of applu (deadline)

the sequential execution time. Therefore, though the power
consumption is quadrupled by using 4 processors, the to-
tal energy consumption is almost equal to the energy of the
sequential execution.

4.2 Performance in real-time execution
mode with deadline constraints

Next, the evaluation results of real-time execution mode
with the deadline constraint are described. Figure 10, 11
and 12 show the total energy consumed until the real-time
deadline. Here, the deadline was set to 150% of the sequen-
tial execution time. The left bars represent the results of
OSCAR compiler without any power saving scheme. In this
case, all processors run at FULL frequency until the dead-
line. The right bars show the results of OSCAR compiler
using the developed power saving scheme in real-time dead-
line mode. These figures show the power saving scheme
drastically reduced energy consumption, because the devel-
oped scheme applied V/F control and power shutdown as
far as the execution time didn’t exceed the deadline. Fur-
thermore, the energy consumption of mpeg2encode or tom-
catv executed in parallel is lower than the energy of the se-
quential execution, when static power is set to 2.2[mW],
22[mW] or 66[mW]. The developed power saving scheme

0
100
200
300
400
500
600
700
800
900

1 2 4 1 2 4 1 2 4 1 2 4

e
n

e
rg

y
[J

]

w/o saving
w saving

rate of static power on dynamic power
1% 10% 30% 50%

Figure 12. Energy of tomcatv (deadline)

Table 4. Energy reduct. for 4 CPUs(deadline)
program static w/o saving w saving reduction
mpeg2 1 % 5929[mJ] 592[mJ] 90.0 %

10 % 6458[mJ] 815[mJ] 87.4 %
30 % 7632[mJ] 1262[mJ] 83.5 %
50 % 8806[mJ] 1476[mJ] 83.2 %

applu 1 % 354[J] 49.5[J] 86.0 %
10 % 385[J] 59.5[J] 84.6 %
30 % 455[J] 81.7[J] 82.1 %
50 % 525[J] 95.1[J] 81.9 %

tomcatv 1 % 542[J] 48.3[J] 91.1 %
10 % 591[J] 70.2[J] 88.1 %
30 % 698[J] 114[J] 83.7 %
50 % 805[J] 134[J] 83.3 %

in real-time processing mode reduced energy by 73.3 %
(from 3229[mJ] down to 861[mJ]) for 2 processors, 87.4
% (from 6458[mJ] down to 815[mJ]) for 4 processors in
mpeg2encode, 68.9 % (from 193[J] down to 59.8[J]) for 2
processors, 84.6 % (from 385[J] down to 59.5[J]) for 4 pro-
cessors in applu and 73.8 % (from 295[J] down to 77.3[J])
for 2 processors, 88.1 % (from 591[J] down to 70.2[J]) for 4
processors in tomcatv, assuming the rate of static power on
dynamic power is 10 %. Table 4 shows the energy reduction
for 4 processors changing static power.

The execution time with the developed power saving
scheme was less than the deadline in all the cases where
static power was changed. This means the developed
scheme could satisfy the deadline constraints.

5 Conclusions

This paper evaluated performance of compiler controlled
power saving scheme for various type of multicore proces-
sors from the low power oriented to the high performance
oriented, changing the quantity of static power. The scheme
gave us good processing performance and low energy con-

sumption for all the cases.
The evaluation assuming static power was 10% of dy-

namic power has shown that the compiler controlled power
saving scheme gave 61.2 percent energy reduction for
SPEC CFP95 applu using 4 processors without perfor-
mance degradation and 87.4 percent energy reduction for
mpeg2encode, 88.1 percent energy reduction for SPEC
CFP95 tomcatv and 84.6 percent energy reduction for applu
using 4 processors with the real-time deadline constraint.

The power saving scheme described here only controls
processors in static scheduling. The development of the
power saving scheme for dynamic scheduling and the sav-
ing method for the resources other than processors are the
future works.

Acknowledgments

A part of this research has been supported by NEDO
“Advanced Heterogeneous Multiprocessor”, STARC “Au-
tomatic Parallelizing Compiler Cooperative Single Chip
Multiprocessor” and NEDO “Multi core processors for real
time consumer electronics”.

References

[1] D. H. Albonesi and et al. Dynamically tuning processor re-
sources with adaptive processing. InIEEE Computer, Dec.
2003.

[2] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A frame-
work for architectural-level power analysis and optimiza-
tions. InProc. of the 27th ISCA, Jun. 2000.

[3] J. Cornish. Balanced energy optimization. InInternational
Symposium on Low Power Electronics and Design, 2004.

[4] R. Eigenmann, J. Hoeflinger, and D. Padua. On the auto-
matic parallelization of the perfect benchmarks.IEEE Trans.
on parallel and distributed systems, 9(1), Jan. 1998.

[5] D. P. et al. The design and implementation of a first-
generation cell processor. InIn Proceeding of the IEEE In-
ternational Solid-State Circuits Conference, 2005.

[6] M. Gonzalez, X. Martorell, J. Oliver, E. Ayguade, and
J. Labarta. Code generation and run-time support for multi-
level parallelism exploitation. InProc. of the 8th Interna-
tional Workshop on Compilers for Parallel Computing, Jan.
2000.

[7] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Mur-
phy, S. Liao, E. Bugnion, and M. S. Lam. Maximizing mul-
tiprocessor performance with the suif compiler.IEEE Com-
puter, 1996.

[8] H.Kasahara and et al. A multi-grain parallelizing compila-
tion scheme on oscar.Proc. 4th Workshop on Language and
Compilers for Parallel Computing, 1991.

[9] H. Honda, M. Iwata, and H. Kasahara. Coarse grain par-
allelism detection scheme of a fortran program.Trans. of
IEICE, J73-D-1(12):951–960, Dec. 1990.

[10] K. Ishizaka, T. Miyamoto, M. o. J. Shirako, K. kimura, and
H. Kasahara. Performance of oscar multigrain paralleliz-
ing compiler on smp servers. InProc. of 17th International
Workshop on Languages and Compilers for Parallel Com-
puting, Sep. 2004.

[11] J.Shirako, N.Oshiyama, Y.Wada, H.Shikano, K.Kimura,and
H.Kasahara. Compiler control power saving scheme for
multi core processors. InProc. of 18th International Work-
shop on Languages and Compilers for Parallel Comput-
ing(LCPC2005), Oct. 2005.

[12] J.Shirako, N.Oshiyama, Y.Wada, H.Shikano, K.Kimura,and
H.Kasahara. Parallelizing compilation scheme for reduction
of power consumption of chip multiprocessors. InProc.
of 12th International Workshop on Compilers for Parallel
Computers (CPC), Jan. 2006.

[13] R. Kalla, B. Sinharoy, and J. Tendler. Ibm power5 chip: a
dual-core multithreaded processor.IEEE Micro, 24(2):40–
47, 2004.

[14] H. Kasahara. Advanced automatic parallelizing compiler
technology.IPSJ MAGANIE, Apr 2003.

[15] H. Kasahara, H. Honda, M. Iwata, and M. Hirota. A com-
pilation scheme for macro-dataflow computation on hierar-
chical multiprocessor system.Proc. Int Conf. on Parallel
Processing, 1990.

[16] H. Kasahara, H. Honda, and S. Narita. Parallel processing of
near fine grain tasks using static scheduling on oscar.Pro-
ceedings of Supercomputing ’90, Nov. 1990.

[17] H. Kasahara, S. Narita, and S. Hashimoto. Architectureof
oscar.Trans of IEICE, J71-D(8), Aug. 1988.

[18] H. Kawaguchi, Y. Shin, and T. Sakurai. uitron-lp: Power-
conscious real-time os based on cooperative voltage scaling
for multimedia applications. InIEEE Transactions on mul-
timedia, Feb. 2005.

[19] K. Kimura, W. Ogata, M. Okamoto, and H. Kasahara. Near
fine grain parallel processing on single chip multiprocessors.
Trans. of IPSJ, 40(5), May. 1999.

[20] T. Kodaka, H. Nakano, K. Kimura, and H. Kasahara. Par-
allel processing using data localization for mpeg2 encod-
ing on oscar chip multiprocessor. InProc. of International
Workshop on Innovative Architecture for Future Generation
High-Performance Processors and Systems, Jan. 2004.

[21] I. Multi-core. http://www.intel.com/multi-core/.
[22] M.Wolfe. High performance compilers for parallel comput-

ing. Addison-Wesley Publishing Company, 1996.
[23] M. Obata, J. Shirako, H. Kaminaga, K. Ishizaka, and

H. Kasahara. Hierarchical parallelism control for multigrain
parallel processing. InProc. of 15th International Workshop
on Languages and Compilers for Parallel Computing, Aug.
2002.

[24] J. shirako, K. Nagasawa, K. Ishizaka, M. Obata, and
H. Kasahara. Selective inline expansion for improvement
of multi grain parallelism.PDCN2004, Feb. 2004.

[25] A. Suga and K. Matsunami. Introducing the fr 500 embed-
ded microprocessor. volume 20, pages 21–27, 2000.

[26] Q. Wu, P. Juang, M. Martonosi, and D. W. Clark. Formal on-
line methods for voltage/frequency control in multiple clock
domain microprocessors. InEleventh International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems, Oct. 2004.

