Toward for Exa-scale and Beyond from Parallelizing Compiler Aspect

Hironori Kasahara
Professor, Dept. of Computer Science & Engineering
Director, Advanced Multicore Processor Research Institute
Waseda University (早稲田大学), Tokyo, Japan
IEEE Computer Society
President Elect 2017, President 2018
URL: http://www.kasahara.cs.waseda.ac.jp/

Waseda Univ. GCSC
Key Technologies

Performance:
- Multigrain Parallelization
 - Hierarchical Coarse Grain Task Parallelization, Loop Parallelization and Vectorization
 - Data Localization and Overlapping Data Transfer Using DMA
- Architecture:
 - Many cores with Accelerators, DMAC (DTU) and Distributed Shared memory
 - Global Address Space
 - Hierarchical processor grouping
 - 3 Dimensional Integration of memory and TSV (Through Silicon Vias)

Power:
- Compiler controlled DVFS including Clock Gating and Power Gating
- Non-volatile Memory is helpful for Power Gating

Programmability
- Automatic Parallelization by Compiler
- User’s advices if compiler could not parallelize sufficiently
Generation of Coarse Grain Tasks

- **Macro-tasks (MTs)**
 - Block of Pseudo Assignments (BPA): Basic Block (BB)
 - Repetition Block (RB): natural loop
 - Subroutine Block (SB): subroutine

![Diagram showing the generation of coarse grain tasks with layers and blocks]
Earliest Executable Condition Analysis for Coarse Grain Tasks (Macro-tasks)

A Macro Flow Graph

A Macro Task Graph
MTG of Su2cor-LOOPS-DO400

- Coarse grain parallelism $\text{PARA_ALD} = 4.3$
110 Times Speedup against the Sequential Processing for GMS Earthquake Wave Propagation Simulation on Hitachi SR16000 (Power7 Based 128 Core Linux SMP)
Data Localization

MTG

MTG after Division

A schedule for two processors
An Image of Static Schedule for Heterogeneous Multi-core with Data Transfer Overlapping and Power Control
Key Technologies

- **Performance:**
 - Multigrain Parallelization
 - Hierarchical Coarse Grain Task Parallelization, Loop Parallelization and Vectorization
 - Data Localization and Overlapping Data Transfer Using DMA
- **Architecture:**
 - Many cores with Accelerators, DMAC (DTU) and Distributed Shared memory
 - Global Address Space
 - Hierarchical processor grouping
 - 3 Dimensional Integration of memory and TSV (Through Silicon Vias)
- **Power:**
 - Compiler controlled DVFS including Clock Gating and Power Gating
 - Non-volatile Memory is helpful for Power Gating
- **Programmability**
 - Automatic Parallelization by Compiler
 - User’s advices if compiler could not parallelize sufficiently
OSCAR Vector Multicore to Support OSCAR Compiler’s Parallelization and Power Reduction for Embedded to HPC.

- Compiler is designed to parallelize many applications.
- Next, hardware is designed to support compiler.

Architecture Supports:
- Global Address Space: Off-chip and on-chip centralized shared memories and local memories are mapped.
- Flexible processor clustering with multi-cast and group barrier sync,
- Power reduction (DVFS & power gating for each core.)
Key Technologies

- **Performance:**
 - Multigrain Parallelization
 - Hierarchical Coarse Grain Task Parallelization, Loop Parallelization and Vectorization
 - Data Localization and Overlapping Data Transfer Using DMA

- **Architecture:**
 - Many cores with Accelerators, DMAC (DTU) and Distributed Shared memory
 - Global Address Space
 - Hierarchical processor grouping
 - 3 Dimensional Integration of memory and TSV (Through Silicon Vias)

- **Power:**
 - Compiler controlled DVFS including Clock Gating and Power Gating
 - Non-volatile Memory is helpful for Power Gating

- **Programmability**
 - Automatic Parallelization by Compiler
 - User’s advices if compiler could not parallelize sufficiently
Power Reduction of MPEG2 Decoding to 1/4 on 8 Core Homogeneous Multicore RP-2 by OSCAR Parallelizing Compiler

Without Power Control (Voltage: 1.4V) vs. With Power Control (Frequency, Resume Standby: Power shutdown & Voltage lowering 1.4V-1.0V)

Avg. Power
5.73 [W] 73.5% Power Reduction 1.52 [W]

MPEG2 Decoding with 8 CPU cores
Key Technologies

- **Performance:**
 - Multigrain Parallelization
 - Hierarchical Coarse Grain Task Parallelization, Loop Parallelization and Vectorization
 - Data Localization and Overlapping Data Transfer Using DMA

- **Architecture:**
 - Many cores with Accelerators, DMAC (DTU) and Distributed Shared memory
 - Global Address Space
 - Hierarchical processor grouping
 - 3 Dimensional Integration of memory and TSV (Through Silicon Vias)

- **Power:**
 - Compiler controlled DVFS including Clock Gating and Power Gating
 - Non-volatile Memory is helpful for Power Gating

- **Programmability:**
 - Automatic Parallelization by Compiler
 - User’s advices if compiler could not parallelize sufficiently
OSCAR Parallelizing Compiler

To improve effective performance, cost-performance and software productivity and reduce power

Multigrain Parallelization

coarse-grain parallelism among loops and subroutines, near fine grain parallelism among statements in addition to loop parallelism

Data Localization

Automatic data management for distributed shared memory, cache and local memory

Data Transfer Overlapping

Data transfer overlapping using Data Transfer Controllers (DMAs)

Power Reduction

Reduction of consumed power by compiler control DVFS and Power gating with hardware supports.
Earthquake Simulation “GMS” on Fujitsu M9000 Sparc CC-NUMA Server

With 128 cores, OSCAR compiler gave us 100 times speedup against 1 core execution and 211 times speedup against 1 core using Sun (Oracle) Studio compiler.