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Abstract. This paper proposes coarse grain task parallelization for a
earthquake simulation program using Finite Difference Method to solve
the wave equations in 3-D heterogeneous structure or the Ground Mo-
tion Simulator (GMS) on various cc-NUMA servers using IBM, Intel
and Fujitsu multicore processors. The GMS has been developed by the
National Research Institute for Earth Science and Disaster Prevention
(NIED) in Japan. Earthquake wave propagation simulations are impor-
tant numerical applications to save lives through damage predictions of
residential areas by earthquakes. Parallel processing with strong scal-
ing has been required to precisely calculate the simulations quickly. The
proposed method uses the OSCAR compiler for exploiting coarse grain
task parallelism efficiently to get scalable speed-ups with strong scaling.
The OSCAR compiler can analyze data dependence and control depen-
dence among coarse grain tasks, such as subroutines, loops and basic
blocks. Moreover, locality optimizations considering the boundary cal-
culations of FDM and a new static scheduler that enables more efficient
task schedulings on cc-NUMA servers are presented. The performance
evaluation shows 110 times speed-up using 128 cores against the sequen-
tial execution on a POWER7 based 128 cores cc-NUMA server Hitachi
SR16000 VM1, 37.2 times speed-up using 64 cores against the sequential
execution on a Xeon E7-8830 based 64 cores cc-NUMA server BS2000,
19.8 times speed-up using 32 cores against the sequential execution on a
Xeon X7560 based 32 cores cc-NUMA server HA8000/RS440, 99.3 times
speed-up using 128 cores against the sequential execution on a SPARC64
VII based 256 cores cc-NUMA server Fujitsu M9000, 9.42 times speed-up
using 12 cores against the sequential execution on a POWER8 based 12
cores cc-NUMA server Power System S812L.
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1 Introduction

Earthquake simulation that simulates the propagation of seismic waves from
hypocenters is important for minimizing the damage by natural disasters. Earth-
quake wave propagation is often formulated as wave equation, which is approx-
imated by Finite Difference Method (FDM) or Finite Element Method (FEM).
The precise simulation usually requires huge calculation time, studies of earth-
quake simulation have been trying parallelization of the program. Akcelik et al.[1]
proposed an FEM earthquake simulation method parallelized by MPI. Their par-
allelized Simulator using 3000 processor cores showed 80% parallel efficiency in
weak scaling on the AlphaServer SC at the Pittsburgh Supercomputing Center
(PSC). Aoi et al.[4] proposed the Ground Motion Simulator (GMS) and paral-
lelized the GMS with GPGPU. They showed the parallelized GMS using 1024
nodes obtained 1028 times speed-up compared to 1 node in weak scaling on the
TSUBAME2.0 in Tokyo Institute of Technology. Tiankai et al.[3] proposed the
parallel octree meshing tool Octor and showed the evaluations of the parallel
Partial Differential Equation (PDE) solver using octree mesh by the Octor on
the AlphaServer SC at the PSC. They showed the solver using 2000 processor
cores could speed-up earthquake simulation 13 times faster than that of using
128 processor cores in strong scaling. Those works achieve high parallel efficiency
by hand parallelization. The hand parallelization needs deep knowledge of par-
allelization and long development periods and costs. Moreover, most existing
studies achieve high parallel efficiency with weak scaling, but high parallel ef-
ficiency with strong scaling is more desirable than that with weak scaling. In
these days, cache coherent Non Uniform Memory Architecture (cc-NUMA) is
common architecture, this architecture requires additional tuning compared to
Uniform Memory Architecture. Therefore, parallelization that is efficient on cc-
NUMA by an automatic parallelizing compiler is expected for productivity and
performance.

This paper proposes a parallelization method that includes modifying of a se-
quential earthquake simulation program into a compiler friendly sequential pro-
gram to assist automatic parallelization of the OSCAR multigrain parallelizing
compiler[5][6]. Unlike the OSCAR multigrain parallelizing compiler, commercial
compilers such as Intel Compiler and IBM XL compiler can utilize only loop par-
allelism. Slight sequential parts prevent us from achieving scalable speed-up in
many core architecture. Therefore, multigrain parallelism offered by the OSCAR
compiler is important.

In this paper, the proposed method parallelizes the earthquake simulator
GMS, coarse grain task parallelism, as well as loop parallelism, is used. A lo-
cality optimization considering the boundary calculations of FDM, a locality
optimization considering First Touch all over the program and an efficient task
scheduling on servers using First Touch policy help to us get strong scaling
speed-up.

The remainder of this paper is organized as follows. Section 2 introduces the
earthquake wave propagation simulator GMS. Section 3 shows the proposed par-
allelization method. Section 4 gives speed-ups on five different cc-NUMA servers.



The servers consist of the SR16000 VM1 (henceforth SR16000), the BS2000, the
HA8000/RS440 (henceforth RS440), the SPARC Enterprise M9000 (henceforth
M9000) and the IBM Power System S812L (henceforth S812L). Finally, section
5 provides the conclusion.

2 The Ground Motion Simulator GMS

For effective disaster prevention planning, the importance of precise earthquake
simulations is increasing. The Ground Motion Simulator (GMS) is the earth-
quake simulator developed by Aoi, Fujiwara in the NIED, and the GMS can
precisely simulate for Japanese ground structure that we can download at J-
SHIS[2]. The GMS consists of parameter generation tools, computation visual-
ization tools and a wave equation solver, and we can download it from the URL
in [7].

The GMS solves the wave equations in 3-D heterogeneous structure, and it
uses Finite Difference Method to approximate the wave equations. One of the
characteristics of the GMS solver is the use of staggered grids. For computation
accuracy, grid points for displacement are shifted from grid points for stress a
half grid in staggered grids. In staggered grids, second order difference operator
is (1).

f ‘i ≃
fi+1/2 − fi−1/2

∆x
(1)

Fourth order difference operator that is higher accuracy than second order
difference operator is (2).

f ‘i ≃
(

−1/24fi+3/2 + 9/8fi+1/2

−9/8fi−1/2 + 1/24fi−3/2

)

/∆x (2)

Besides, the GMS solver uses discontinuous grids to accelerate the simulation.
In discontinuous grid, as shown in Fig.1, grids of near the earth’s surface or
Region I is three times smaller than that of a deeper region or Region II. It
is because the grid spacing has to be smaller for precisely simulating waves of
shorter wavelength. In the grids near the surface, the wavelength is shorter than
that of the deeper region. By using discontinuous grid replace of uniform grid,
the GMS solver reduces calculation for the deeper region.

In brief, the GMS solver is to calculate velocity and stress of each grid and
each step by using external force as inputs.

In the GMS solver, external force can be added as velocity or stress and
second order difference operator or fourth order difference operator can be used.
This paper deals with the GMS solver in which external force is added as stress
and fourth difference operator is used.
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Fig. 1. Discontinuous grid in the GMS
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Fig. 2. Macro task graph of the GMS main
loop

3 Coarse grain task parallelization of the GMS

This section proposes a parallelization method for the GMS. Before paralleliza-
tion, the sequential GMS solver written in Fortran 90 is changed into a sequential
FORTRAN 77 program. It is because the OSCAR compiler just supports FOR-
TRAN 77 and the GMS uses Fortran 90 to use the I/O library HDF[8] though
main parts are written in FORTRAN 77.

3.1 Coarse grain task parallelization

This section shows how the OSCAR compiler[5][6] exploits parallelism in a pro-
gram. The OSCAR compiler can exploit multigrain parallelism that uses loop
parallelism, coarse grain task parallelism and statement level fine grain paral-
lelism considering its parallelism. Coarse grain task parallelism in the OSCAR
compiler means parallelism among three kinds of coarse grain tasks, namely
Basic Blocks (BBs), Repetition Blocks (RBs) and Subroutine Blocks (SBs).

First, the OSCAR compiler decomposes a sequential source program to macro
tasks in each nested level hierarchically. Then it makes macroflow graphs which
represent data dependency and control flow among the macro tasks. Next, it
analyzes and detects parallelism in the macroflow graphs by using Earliest Exe-
cutable Condition analysis[5] that analyzes the simplest forms of conditions the
macro tasks may start their execution considering control dependencies and data
dependencies, and then generates macro task graphs. Next, it analyzes and de-
tects parallelism in the macroflow graphs by using Earliest Executable Condition
analysis[5] and then generates macro task graphs. Earliest Executable Condition
analysis is to analyze the simplest forms of conditions the macro tasks may start
their execution considering control dependencies and data dependencies. Macro
task graphs represent parallelism among macro tasks. If the macro task graph



has only data dependency edge, the macro tasks are assigned by static schedul-
ing to processors or processor groups that are grouped logically by the compiler
for hierarchical coarse grain task parallelization. If the macro task graph has
any control dependency edges, the macro tasks are assigned to processors or
processor groups at runtime by a dynamic scheduler. The dynamic scheduler is
generated by the OSCAR compiler exclusively for the program[5] and embedded
into the parallelized program automatically. Finally, the OSCAR compiler gen-
erates a parallelized Fortran program using the OSCAR API Ver2.0[11], which
the ordinary product OpenMP compilers provided for the target machines can
compile.

3.2 Modification of the GMS

Fig.2 shows the macro task graph in the main loop of the GMS. The macro
task graph was generated by the OSCAR compiler and has 18 macro tasks
and one exit task representing the end of the macro task graph. Solid edges in
macro task graph represent data dependencies among macro tasks and broken
edges in macro task graph represent control dependencies. There is parallelism
among coarse grain tasks such as parallelism between SB3 and SB4 in Fig.2.
It is because of discontinuous grids of the GMS. In discontinuous grids, We
can execute velocity calculation of the near surface grids or SB3 and velocity
calculation of the grids in the deeper area or SB4 in parallel. After that, the
boundary of the near surface grids and the grids in the deeper area is executed
in SB5. There is similar parallelism for stress calculations. We can execute stress
calculation of the near surface grids or SB11 and stress calculation of the grids
in deeper area or SB12 in parallel.

Next, to increase coarse grain task parallelism, inline expansion is applied
to all subroutines, or SBs in Fig.2, in the main loop. Fig.3 is the macro task
graph with 131 macro tasks for the main loop after the inline expansion of all
subroutines. We extract very large coarse grain task parallelism as shown in
Fig.3. It is because coarse grain task parallelism inside the subroutines are taken
out to the main loop level. By the inline expansion, task parallelism among the
tasks in the SBs with dependency can be used. LOOP3 in Fig.3 is originally in
SB1 in Fig.2, and DOALL10 in Fig.3 is originally in SB3 in Fig.2. Though SB1
and SB3 in Fig.2 have dependency among them, LOOP3 and DOALL10 in Fig.3
have no dependency among them. 60 macro tasks are analyzed to be DOALL
or parallel loop in in Fig.3. Since we can split each DOALL loop into parallel
macro tasks, much larger coarse grain task parallelism can be exploited.

Besides, to enhance loop parallelism and spatial locality, loop interchange
and array dimension interchange are applied.

3.3 Data distribution to distributed shared memories using First

Touch

In cc-NUMA machines, how to distribute variables to memories is important to
get good performance. Usually, cc-NUMA machines use first touch policy[12].
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Fig. 3. Macro task graph after inline expansion

On first touch policy, a page is allocated to the memory nearest to the processor
that first touched the page.

The GMS solver uses the Hierarchical Data Format (HDF) library[8] for file
access. The HDF library is to allow us to manage large and complex data collec-
tions. The master thread executing the library first touches all input arrays of
the original GMS solver. It forces cc-NUMA machines to assign those arrays to
the distributed shared memory near the processor core that execute the master
thread. It means that all processor cores access to the distributed shared mem-
ory near the processor core executing the main thread, and the heavy memory
contention occurs.

To fully utilize distributed shared memories on cc-NUMA machines, in the
proposed method, the input arrays are copied to new arrays with interchanged
indexes to be first touched by each processor element. Fig.4 shows an exam-
ple of the modification. Originally, an array A is first touched in a subroutine
external library array init and is used in a subroutine main loop. Because the
OSCAR compiler can’t parallelize external library, a new array A COPY is cre-
ated and values of the array A are copied to the array A COPY . Then, the
subroutine main loop uses the array A COPY in place of the array A. In the
GMS, 33 arrays are copied to be first touched by each processor element.



program sample

integer A(1000)
integer A_COPY(1000)
{copied array}

call external_library_array_init(A)
{a array is originally first touched here}

do i=1,1000
A_COPY(i)=A(i)

enddo

{copying the original array to a new array}
call main_loop(A_COPY)

{in main loop, the new array is used}
do i=1,1000

A(i)=A_COPY(i)
enddo
{copying the new array to the original array}

call output_A(A)
end

Fig. 4. Example of the array copy for first touch

3.4 Task Scheduling on cc-NUMA

The control dependencies in the macro task graph are represented as broken
edges between tasks. There is no control dependency edge in Fig.3. Therefore,
the OSCAR compiler chooses static scheduling to schedule the macro tasks to
processor elements.

On cc-NUMA machines, access to a remote distributed shared memory is
slower than that of a local distributed shared memory. So to improve the ef-
ficiency of parallel processing of the program, a scheduler that takes accounts
of the first touch information was developed. By first touching the copied new
arrays mentioned above, the arrays used for the main loop are first touched at
the each copy loop, so the scheduler can know which processor element first
touched the array. The static scheduler decides optimal processors to execute
for each task using the first touch information, and then schedule ready tasks
to its optimal processors in order of critical path length. Critical path length is
the length of the longest path from any node to the exit node on a macro task
graph.

Fig.5 is an example of the scheduling. Fig5(a) is a macro task graph and
(b) shows how PEs first touch variables. Fig5(c) represents the range of arrays
used by each task and the optimal PEs to which each task should be assigned
considering the information of the first touch showed in (b). Finally Fig5(d)
shows processing steps of the scheduling. In the third step of (d), the task T3
is assigned to PE1. The task T3 is not dependent on T4, so if the task T3 is
assigned to PE0, the task T3 may start soon after the task T2 ended. But if
the task T3 is assigned to PE0, access to a remote distributed shared memory
would occur, so the scheduler assigns the task T3 to PE1. The scheduler restricts
the tasks to be assigned to the optimal PE considering the first touch to reduce
memory access overheads.
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Fig. 5. An example of the scheduling

3.5 Locality optimization of boundary calculations in FDM

Fig.6 is a source code of velocity calculation of the center grids or DOALL10 in
Fig.3 and that of boundary grids or DOALL11 in Fig.3. The GMS use fourth
order difference operator for FDM calculations. But the fourth order difference
operator can’t be used at the boundary of the grids in the GMS. Therefore,
second order difference operator is used at the boundary. The DOALL10 and the
DOALL11 have no dependency among them, but both loops access the almost
same ranges of the arrays taking account of cache lines. Though cache reuse is
expected by executing the both loops continuously[9][10], the arrays used by the
both loops are too large to be fully stored in L2 or L3 caches.

In this section, the loop fusion is applied to the both loops to optimize the
locality. To focus on ux in Fig.6, the DOALL10 uses ux( 2 : nk-2, 2 : nj-1, 2 : ni-1
), and the DOALL11 uses ux( 1, 2 : nj-1, 2 : ni-1 ) and ux( nk-1, 2 : nj-1, 2 : ni-1
). Though the ranges of the array ux of the first loop don’t overlap with that of
the second loops, it is expected that ux( 1,j,i ) and ux( 2, j, i ) are allocated in
the same cache line. The same is true of ux( nk-2, j, i ) and ux(nk-1, j, i ). By
the loop fusion taking account of cache lines, memory access of the boundary
calculation in FDM is expected to be sharply optimized.

Fig.7 is the macro task graph of the main loop after loop fusion. The proposed
method fuses 12 loops into the four loops.

3.6 Generated compiler friendly sequential program and its parallel

compilation

The proposed method applies above-mentioned modifications to the sequential
GMS program. The modified sequential program is compiled by the OSCAR
compiler and changed into parallelized Fortran program using the OSCAR API
Ver2.0[11]. The OSCAR API is compatible with OpenMP. Therefore, compilers



{calculation of the center area}
do i=2,ni-1

do j=2,nj-1
do k=2,nk-2

ux(k,j,i)=(ux(k,j,i)+bbx*(
+dtdx*(c0*(sxx(k,j,i+1)-sxx(k,j,i))

- c1*(sxx(k,j,i+2)-sxx(k,j,i-1)))

+dtdy*(c0*(sxy(k,j,i)-sxy(k,j-1,i))
- c1*(sxy(k,j+1,i)-sxy(k,j-2,i)))

+dtdz*(c0*(sxz(k,j,i)-sxz(k-1,j,i))
- c1*(sxz(k+1,j,i)-sxz(k-2,j,i))))

)*aaqq
enddo

enddo

enddo
{calculation of the boundary}

do i=2,ni-1
do j=2,nj-1
do k=1,nk-1,nk-2

ux(i,j,k)=( ux(i,j,k)+bbx*(
+dtdx*(c0*(sxx(k,j,i+1)-sxx(k,j,i))

- c1*(sxx(k,j,i+2)-sxx(k,j,i-1)))
+dtdy*(c0*(sxy(k,j,i)-sxy(k,j-1,i))

- c1*(sxy(k,j+1,i)-sxy(k,j-2,i)))
+dtdz*(sxz(k,j,i)-sxz(k-1,j,i)) )
)*aaqq

enddo
enddo

enddo

Fig. 6. Example of center and boundary calculations

provided for target cc-NUMA machines can compile the program with the OS-
CAR API to the executable binary. In this paper, IBM XL Fortran compiler,
Intel Fortran compiler and Sun Studio Fortran compiler compile the generated
parallel programs.

4 Performance of the parallelized GMS

This section evaluates speed-up of the parallelized GMS on five different cc-
NUMA machines.

4.1 Evaluation Environments

The authors use the SR16000, the BS2000, the RS440, the M9000 and the S812L
for the evaluations. Table 1 summarizes the specifications of the five servers.

The SR16000 is a POWER7 based 128 cores cc-NUMAmachine. The SR16000
consists of four boards and the fully-connected network connects the four boards.
Each board has four processors and the fully-connected network connects the
four processors. The evaluations in Section.4.2,4.3, 4.4 use the SR16000. The
authors bind the paralelized programs to the processor cores by the compact
manner. The compact manner is to use processor cores in core number order.

The BS2000 is a Xeon E7-8830 based 64 cores cc-NUMA machine. The spe-
cial feature of BS2000 is that it consists of four ordinary blade servers, however,
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Fig. 7. Macro task graph after loop fusion

just attaching the inter-blade coherent control module connecting the blades, the
blades is changed into a cc-NUMA server. Because each processor can use three
QPIs for inter-processor connection, some pairs of the processor are connected
directly and the other pairs are connected with one hop or two hops. The eval-
uations in Section.4.3 use the BS2000. The authors bind parallelized programs
to the processor cores by the compact manner.

The RS440 is a Xeon X7560 based 32 cores cc-NUMA machine. The RS440
consists of four processors each of which has eight cores, and QPIs fully connect
each processor. The evaluations in Section.4.3 use the RS440. The authors bind
parallelized programs to the processor cores by the compact manner.

The M9000 is a SPARC64 VII based 256 cores cc-NUMA machine. The
M9000 consists of 16 boards each of which has 16 cores. Two crossbar switches
connect eight boards to make a cluster, and then two clusters are connected to
compose the M9000. The evaluations in Section.4.3 use the M9000. The evalu-
ations use up to 128 cores of 256 cores for the OSCAR compiler can cope with
up to 128 cores at present. The authors bind parallelized programs to the every
other processor core to utilize L2 cache memory and main memory fully.

The S812L is a POWER8 based 12 cores cc-NUMA machine. The S812L
has a Dual Chip Module ( DCM ) and a Dual Chip Module includes two chip
each of which has six cores[13]. The evaluations in Section.4.3 use the S812L.
Though S812L has eight slots for DIMM modules, the authors equipped four
16GB DIMM modules to S812L.

The evaluations use three data sets such as Unit00420, Unit01680 and Unit06720.
Table 2 summarizes the number of grids in the data sets. The Unit01680 is
medium size among them and used for Section.4.2,4.3. The Unit00420 is the
smallest data set among them and used for Section.4.4. The Unit06720 is the
biggest data set among them and used for Section.4.4.



Table 1. Server Specifications

SR16000 BS2000 RS400
CPU POWER7 Xeon E7-8830 Xeon X7560

Frequency 4GHz 2.13GHz 2.27GHz
cores per 1 processor 8 8 8

L2 cache 256KB(1core) 256KB(1core) 256KB(1core)
L3 cache 32MB(1processor) 24MB(1processor) 24MB(1processor)
Processors 16 8 4
CPU cores 128 64 32
Memory 1TB 256GB 128GB

OS RedHat Linux RedHat Linux Ubuntu
Version 6.4 6.1 14.04.1

Linux kernel version 2.6.32 2.6.32 3.13.0
Compiler XL Fortran Intel Fortran compiler Intel Fortran compiler
Version 13.1 12.1.5 12.1.5

M9000 S812L
CPU SPARC64 VII POWER8

Frequency 2.88GHz 3.026GHz
cores per 1 processor 4 12(1 DCM),6(1 chip)

L2 cache 6144KB(1processor) 512KB(1core)
L3 cache none 96MB(1DCM),48MB(1chip)
Processors 64 1(DCM),2(chip)
CPU cores 256 12
Memory 512GB 64GB

OS Solaris RedHat Linux
Version 10 7.1

Linux kernel version 3.10.1
Compiler Sun Studio Fortran compiler XL Fortran
Version 12.1 15.1.1

Table 2. Number of grids in Datasets

Unit00420 Unit01680 Unit06720
Number of Grids in RegionI 420 × 420 × 100 1680 × 1680 × 100 6720 × 6720 × 100
Number of Grids in RegionII 140 × 140 × 200 560 × 560 × 200 2240 × 2240 × 200

Total Memory 0.8GB 12.2GB 195.2GB

4.2 Comparison of Commercial Compilers and the Proposed

Method

The comparisons among the original GMS parallelized by commercial compil-
ers provided for the servers, such as IBM XL Fortran compiler, Intel Fortran
compiler and Sun Studio and the GMS parallelized by the proposed method are
shown.

Fig.8 shows a summary of the comparison between XL Fortran compiler and
the proposed method on the SR16000. On a one processor core, the sequential
execution time by the proposed method is 1.65 times faster than the original
sequential program. Speed-ups of the original GMS parallelized by XL Fortran
compiler were 15.3 times using 32 cores, 10.3 times using 64 cores and 11.8
times using 128 cores. It means that XL Fortran compiler can find loop paral-
lelism in the GMS, but it can’t give us scalable speed-up for the GMS on 64PEs
and 128PEs in the SR16000. Speed-up of the GMS parallelized by the proposed
method using 128 cores was 156.3 times against the original sequential execu-
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tion. Higher speed-up by the proposed method using 128 PEs is obtained. The
first reason is that the parallelization by XL Fortran compiler can only utilize
loop parallelism, besides the proposed method can utilize multigrain parallelism.
The second reason is that the master thread first touches the most of arrays and
those arrays are assigned to distributed shared memory near processor core that
execute the master thread. Therefore, remote memory accesses of parallel ex-
ecution by XL Fortran compiler occur frequently and the execution time gets
long.

Fig.9 shows a summary of the comparison between Intel Fortran compiler
and the proposed method on the RS440. The proposed method works 1.3 times
faster than the original sequential execution. The speed-up ratio of Intel Fortran
compiler using 32PEs is 17.8 times, it means that Intel Fortran compiler can
also find loop parallelism in the GMS. On the RS440, loop parallelization works
well. But on cc-NUMA with the bigger number of cores like the SR16000 and the
M9000, the distance between the core and the remote memory becomes farther.
The parallelization of the initialization of the arrays and the coarse grain task
parallelization which consider First Touch is thought to be indispensable on
cc-NUMA with the big number of cores.

Fig.10 shows a summary of the comparison between Sun Studio and the
proposed method on the M9000. The proposed method gives us 2.1 times faster
execution than the original sequential execution. Moreover, the proposed method
using 128PEs gets 211 times speed-up from the original sequential execution.

In Fig.8, Fig.9, Fig.10, the sequential executions of the proposed method get
speed-up from the original sequential executions. This is because the locality
optimization by the loop fusion described in Sectuion.3.5.

4.3 Performance on the five different cc-NUMA servers

Speed-ups of the GMS parallelized by the proposed method from the sequential
execution of the proposed method on the five different cc-NUMA servers are
shown in Fig.11. Speed-ups of the GMS on the SR16000 was 94.9 times using
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128 cores, that with 64 cores on the BS2000 was 37.2 times, that with 32 cores
on the RS440 was 19.8 times, that with 128 cores on the M9000 was 99.3 times,
and that with 12 cores on the S812L was 9.42 times.

The BS2000 and the RS440 are relatively inexpensive servers compared to
the SR16000 and the M9000, memory bandwidth of the former two servers are
relatively narrow compared to the latter two servers. Therefore, speed-ups by
parallelization on the former two servers tend to be limited by the memory
bandwidth.

The speed-up of S812L is 9.42 times using 12 cores against sequential process-
ing. The parallel efficiency of the S812L using maximum core is 9.42÷12 = 78.5%,
and it is higher than that of the RS440(61%) and that of the BS2000(58%).

On the SR16000 and the M9000, near 100 times speed-up using 128 cores can
be obtained. It means that the proposed method successively utilize cc-NUMA
machines.

4.4 Evaluations with various data sizes

Fig.12 summarizes the results of the evaluation with the various data sizes on
the SR16000. The speed-ups on the Unit00420, a relatively small data set, were
25.0 times using 32 cores, 43.7 times using 64 cores and 75.7 times using 128
cores. Even on the smallest data set, over 64 times speed-up or half number of
the cores used can be obtained. The speed-ups on the Unit06720 or the biggest
data set were 21.7 times using 32 cores, 58.7 times using 64 cores and 110.7
times using 128 cores. Naturally, the results show that the bigger data size give
us better speed-ups because of the smaller ratio of remote memory access in the
whole execution.

5 Conclusions

This paper has proposed a parallelizing optimization method of the earthquake
simulator GMS. We can use earthquake simulations for damage predictions of
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Fig. 12. Speed-up ratios of the proposed method with various data sets on the SR16000

earthquakes. By accelerating the earthquake simulations, it is expected that
more exact damage prediction required for protecting more lives from disaster
become possible. The proposed method modifies an original sequential Fortran
program into parallelizing compiler friendly sequential Fortran program by hand
to increase coarse grain task parallelism and data locality. The modifications by
hand are the loop interchange and the array dimension interchange described in
Section.3.2 and the array duplication described in Section.3.3 and the loop fu-
sion described in Section.3.5. By the simple modifications, the OSCAR compiler
can analyze coarse grain parallelism and data dependency among coarse grain
tasks and generate a portable parallel program. In the proposed method, once
users modify the original program into parallelizing compiler friendly sequential
program, no further work is required to port to another shared memory servers.

The performance evaluations show 110.7 times speed-up using 128 cores
against the sequential execution on the POWER7 based 128 cores cc-NUMA
server Hitachi SR16000 VM1, 37.2 times speed-up using 64 cores against the se-
quential execution on the Xeon E7-8830 based 64 cores cc-NUMA server BS2000,
19.8 times speed-up using 32 cores against the sequential execution on the Xeon
X7560 based 32 cores cc-NUMA server HA8000/RS440, 99.3 times speed-up
using 128 cores against the sequential execution on the SPARC64 VII based
256 cores cc-NUMA server Fujitsu M9000, 9.42 times speed-up using 12 cores
against the sequential execution on the POWER8 based 12 cores cc-NUMA
server Power System S812L. Besides, the performance evaluation shows that the
proposed method succeeded to obtain 13.2 times speed-up against the parallel
execution by XL Fortran compiler using 128 cores on the SR16000 and 1.4 times
speed-up against the parallel execution by Intel Fortran compiler using 32 cores
on the RS440 and 211.0 times speed-up against the parallel execution by Sun
Studio Fortran compiler using 128 cores on the M9000.

The proposed method is effective for programs with simple array access order
like Finite Difference Method. Additional optimizations may improve the perfor-
mance of programs with complex array access order parallelized by the proposed
method. Finite Element Method often uses complex array access order.



This paper has shown the proposed parallelization method of the GMS using
the OSCAR multigrain parallel compiler gives us scalable speed-ups with strong
scaling on five different cc-NUMA servers.
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