
Automatic Parallelization of Hand Written

Automotive Engine Control

Codes Using OSCAR Compiler

Dan Umeda, Yohei Kanehagi, Hiroki Miakami, Akihiro Hayashi,

Keiji Kimura and Hironori Kasahara

Department of Cumputer Science and Engineering, Waseda University

3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.

Email: {umedan, ykane, ahayashi, kimura, kasahara} @kasahara.cs.waseda.ac.jp

Abstract— The next-generation automobiles are required to

be more safe, comfortable and energy-efficient. These

requirements can be realized by integrated control systems with

enhanced electric control units, or real-time control system such

as an advanced engine control unit and an enhanced information

system, human and other cars recognition, a navigation system

considering traffic conditions in an emerging occasion from a

natural disaster. For these purpose, performance enhancement of

microprocessors is required to realize the next-generation

automobiles integrated control system. However, the

improvement of clock frequency and instruction-level parallelism

such as Superscalar are difficult. And the performance of a

single-core processor which controls power has reached the limits.

Taking into account these factors, use of multi-core processors

has been thought a promising approach to realize the next-

generation automobiles integrated control system. However,

automotive programs are difficult to parallelize because they

have no loop parallelism that has been used in multi-core

processors for a long time. This paper proposes to parallelize an

automotive engine crankshaft control program which consists of

conditional branches and arithmetic assign statements, basic

blocks using automatic multigrain parallelizing compiler, or the

OSCAR Compiler has been developed by the authors for more

than 25 years. OSCAR compiler uses coarse grain task

parallelism with newly developed a parallelism enhancing

method like the branch duplication instead of loop parallelism.

Performance of the hand-written engine control programs which

was provided by Toyota Motor Corp, on the RP-X having eight

SH4A processor cores developed by Renesas, Hitachi, Tokyo

Institute of technology and Waseda University is evaluated. The

evaluation shows speedups of 1.54 times with 2 processor cores

compared with the case of an ordinary sequential execution. The

proposed method successfully accelerated engine control

program on a real multi-core processor.

Keywords— Keywords: multi-core processor, automobile,

automatic parallelization, embedded system

I. INTRODUCTION

Automobiles have become essentials in human lives. The
technologies for automobiles have been advancing for the last
several decades especially because of the advances of
Electronic Control Units (ECUs). Those advances will allow
us more safe, comfortable and energy efficient on the next-
generation automobiles. These requirements can be realized by
integrated control systems that fuse enhanced ECUs like engine
control units and enhanced information system such as
recognition systems for human and other cars and navigations
systems considering traffic conditions including the occasions
of natural disasters.

The sophisticated engine control algorithms and functions
which will be used in the next-generation ECUs require
performance enhancement on microprocessors to satisfy real-
time constraints. However, performance improvement with
single core processor has been limited by power consumption.
Use of multi-core processors is a promising approach to realize
the integrated control systems.

In terms of multi-core processors for the automotive control,
the previous works have focused on improvement of reliability
by performing redundant calculation [1][2] and throughput by
functional distribution [3] rather than improvement of response
time, or performance by parallel processing. In other words,
they could not improve response time at all. To the best of our
knowledge, parallel processing of the automotive control
software to reduce response time has not been succeeded on
multi-core processors because the software consists only of

conditional branches and small basic blocks. In the software,
there are no loops, to which traditional parallelizing compiler
have paralleled.

On the other hand, this paper has successfully parallelized
the practical automotive engine control software using
automatic multigrain parallelizing compiler, or the OSCAR
compiler [4]. In this paper, a newly developed parallelism
enhancement methods like the branch duplication instead of
loop parallelism for engine control programs are proposed.
These techniques applied to engine control software. The
parallelized engine control software by the OSCAR compiler is
evaluated on an embedded multi-core using SH-4A processor
cores, RP-X.

The rest of this paper is organized as follows: Section II
introduces the OSCAR Automatic Parallelizing Compiler.
Section III proposes the method of parallel processing of
engine control programs. Section IV describes evaluation of
performance using our method. Finally, Section V is
conclusions for this paper.

II. OSCAR AUTOMATIC PARALLELIZING COMPILER

This section describes the overview of the OSCAR
compiler. The OSCAR Complier realizes an automatic
parallelization of programs written in Parallelizable C [5],
which is very close to MISRA C [6][7][8] used in automobile
industry for reliability and productivity. The OSCAR
Compiler’s input is a sequential program and its output
includes an executable for a target multi-core and a multi-
platform parallelized C code using OSCAR API [9][10], which
allows us to execute the parallelized C code on various multi-
core processors include ARM, Intel, IBM, Renesas Electronics,
Tilera, Fujitsu, and so on. The OSCAR Compiler exploits
multigrain parallelism including coarse-grain parallelism, loop
level parallelism and fine-grain parallelism [11]. First of all, the
OSCAR Compiler decomposes a program into coarse grain
tasks, namely macro-tasks (MTs), such as basic blocks (BBs),
loops (RBs), and function call or subroutine calls (SBs) as
shown as Fig 1. Macro-tasks can be hierarchically defined
inside each sequential loop or function. After generation of
macro-tasks, data dependencies and control flow among
macro-tasks are analyzed in each nested layer, and hierarchical
macro-flow graphs (MFGs) representing control flow and data
dependencies among macro-tasks are generated. A Macro-
Flow Graph (Fig. 2a) represents control flow and data
dependencies among Macro-Tasks. Nodes represent Macro-
Tasks, solid edges represent data dependencies among Macro-
Tasks, and dotted edges represent control flow. Small circle
inside a node represents a conditional branch inside the Macro-
Tasks. Though arrows if edges are omitted in the Macro-Flow
Graph, it is assumed that the directions are downward.

Then, to exploit coarse grain task parallelism among
macro-tasks MTs associated with both the control
dependencies and the data dependencies, the Earliest
Executable Condition analysis [12] is applied to each macro-
flow graph. By this analysis, a macro-task graph (MTG) is
generated (Fig. 2b). Macro-Task Graphs represent coarse grain
task parallelism among Macro-Tasks. Nodes represent Macro-
Tasks. A small circle inside a node represents conditional

branches. Solid edges represent data dependencies. Dotted
edges represent extended control dependencies. Extended
control dependency means ordinary normal control dependency
and the condition on which a data dependence predecessor of a
Macro-Task is not executed. Solid and dotted arcs connecting
solid and dotted edges have two different meanings. A solid arc
represents that edges connected by the arc are in AND
relationship. A dotted arc represents that edges connected by
the arc are in OR relationship. Though arrows of edges are
omitted assuming downward direction, edges having arrow
represents original control flow edges, or branch direction in
Macro-Flow Graph. If SB or RB has nested inner layer, Macro-
Tasks and Macro-Task Graphs are generated hierarchically. If
the Macro-Task Graph has only data dependencies, the
compiler schedules Macro-Tasks to Processor Groups at
compile time (static scheduling). The static scheduling scheme
can minimize data transfer, task assignment and
synchronization overhead. If the Macro-Task Graph has
conditional branches among Macro-Tasks, the dynamic
scheduling developed by the authors’ group is usually applied.
However, in this paper, OSCAR compiler uses only static
scheduling to minimize run-time overhead considering the
grain of the automotive codes as described in the next section.

Fig. 1. Exploitation of multigrain parallelism including coarse-grain

parallelism

Fig. 2. Macro-flow graph and macro-task graph

III. PARALLELIZATION OF ENGINE CONTROL PROGRAMS

This section introduces the parallel processing method for
automotive programs using the OSCAR compiler. This method

successfully extracts the suitable parallelism for two processor
cores that automotive companies are targeting for the ECUs,
and enables to parallelize with low overhead.

In this paper, a crankshaft control program which is one of
the important engine control code is parallelized. One of the
most important characteristics from the point of parallel
processing, they have no loop parallelism that has been used in
multi-core or multi-processors for a long time. Therefore, the
proposed method extracts more parallelism among functions
and conditional branches as much as possible, and minimizes
run-time overhead as less as possible using restructurings.

A. Characteristics of Engine control programs

The hand-written engine programs have the following
characteristics to control systems strictly.

 They are composed of small basic blocks which cost
less than 100 clock cycles.

 There are composed of many conditional branches
related to sensors and control modes.

 They have only a few parallelizable loops with very
small execution cost.

All these characteristics prevent ordinary parallelizing
compilers from parallelizing engine control programs because
of their too fine granularity, complicated control flow
structures and little loop parallelism. In order to parallelize
those programs with low run-time overhead, the following
three items are applied as the basic parallelizing strategy:

 Coarse grain task parallelization among basic blocks

 Static scheduling of basic blocks on MTG to processor
cores

 Code restructuring to improve parallelism considering
complicated control flow structure

These items are described in following sections.

B. Coarse Grain Parallelization for Engine Control

programs

The target engine control programs like crankshaft control
are composed of conditional branches and small basic blocks
without parallelizable loops that have been used in multi-core
processors for a long time. Almost all basic blocks cost less
than 100 clock cycles. Also fine grain parallelization cannot be
applied because they have many conditional branches which
prevent compilers from fine grain parallelization.

For these reasons, current product compilers cannot
parallelize this kind of automotive control programs. Also,
accelerators cannot be applied to this application because of
conditional branches. The traditional loop parallelization
technique widely used for multi-core processors can not apply
the target engine control program since the program is
composed of a series of conditional branches, assignment
statements, and subroutine calls.

The coarse grain task parallel processing by the OSCAR
compiler [4] is suitable since function calls and basic blocks

can be defined as a task in addition to loops. Fig. 3 shows a
MTG of the crankshaft control program which is parallelized in
this paper. In this graph, yellow nodes represent subroutine
blocks and red nodes represent basic blocks. In this paper,
though the OSCAR compiler can apply near the fine grain
parallel processing and loop iteration level parallel processing
hierarchically, proposed method utilizes only coarse grain
parallelization in the OSCAR compiler because they have no
parallelizable loop and many conditional branches.

Fig. 3. Macro-task graph of a crankshaft control

C. Static Scheduling for engine control programs

It is required for engine control software to guarantee real-
time constraints because this software has hard real-time
constraint and to minimize run-time overhead because this
program runs in the cycle of a few millisecond on a embedded
processor. For these reason, static scheduling is applied in this
paper instead of dynamic scheduling which has run-time
overhead. However, these MTs in Fig.3 which have conditional
branches such as bb5, bb6 and bb8 cannot be scheduled
statically because the compiler cannot see if the branch is taken
or not at compile time. The OSCAR usually applies dynamic
scheduling for a program which has conditional braches.

For application which it to be applied static scheduling,
compiler can hide all conditional branches in MTG using task
fusion. Fig.4 shows MTG using task fusion. A block5 in this
MTG is merged block using task fusion and has conditional
branches inside the merged MT. In Fig.3, the OSCAR compiler
fuses a group of conditional branches of bb5 to bb11. The
OSCAR compiler generates MTG which has only data
dependencies and enables to assign tasks in Fig.4 statically.
Also, profiling based cost is used to enhance static scheduling
in this paper.

Fig. 4. Macro-task graph of a crankshaft program using task fusion

D. Restructuring For Engine Control programs

As shown in Fig. 4, sb1 and sb6 seem to be able to be
executed in parallel with other tasks because sb1 and sb6 has
no dependency on other tasks. However, because the execution
times of sb1 and sb6 occupy just 1% of the whole execution
time and the critical path composed of sb2, sb4 and block5 in
this graph occupies about 99% of the whole execution time, an
inline expansion is applied to sb2 and sb4 in order to exploit
more parallelism over hierarchies or nested levels.

In the proposed method, to improve coarse grain task
parallelism the OSCAR Compiler uses a selective inline
expansion method. This selective inline expansion chooses
function calls which have a coarse grain parallelism inside
callee functions and also have large execution cost. Then, it
applies inline expansion to the selected function calls to exploit
sufficient parallelism keeping the code size as small as possible.

Fig. 5 shows a MTG of the restructured program by which
a selective inline expansion was applied. As shown in Fig. 5,
more coarse grain parallelism is exploited than that of the MTG
in Fig. 4. However, the execution time of block36 still occupies
about 70% of the whole execution time. The theoretical
maximum speed-up ratio which is calculated as (1) is about 1.1

times because the critical path in this MTG occupies about
90% of the whole execution time.

Then, the block36 becomes the next target since this large
execution cost and still has coarse grain parallelism inside it.
Fig. 6 shows a simplified image of the block36. There are sb2,
sb3 and sb4 inside a then-clause of the if-statement as a shown
in the left side of Fig. 6. These subroutine calls are assigned
onto the same processor core though there is no dependence
among them. Fig.7 shows a MTG of example source code in
Fig.6. These coarse grain parallelisms among them cannot be
exploited since the if-statement and these subroutine calls are
packed into the same MT to minimize scheduling overhead.

 Here, this if-statement is duplicated to exploit coarse grain
task parallelism among sb2, sb3 and sb4. As a shown in Fig. 6,
the if-statement is duplicated for each subroutine call, then
each duplicated if-statements and corresponding subroutine call
are packed into same MT. Thus, coarse grain parallelism
among those subroutine calls can be efficiently exploited. Such
the duplication can be applied when variables used in a
condition-expression is not changed in a then-clause like the
sb2, sb3 and sb4 in this example.

Fig. 8 shows a MTG of the program after the inline
expansion and the conditional branch duplication have been
applied. In this graph, the average cost of MT is about 3,000
clock cycles. In addition, maximum cost of MT is about 10,000
clock cycles, and minimum cost is less than 100 clock cycles.
The static scheduling for coarse grain parallelism imposes little
synchronization overhead for such the task granularity. The
critical path in this graph occupies about 60% of the whole
execution time. The proposed methods reduce the critical path
from 99% to 60%. Selective inline expansion and conditional
branch duplication allow us to exploit remarkable coarse grain
parallelism. Finally theoretical maximum speedup ratio which
is calculated as (1) is about 1.6 times in this graph because the
critical path occupies about 60% of the whole execution time.

Theoretical Maximum Speedup Ratio

=(Whole Execution Time)/(Execution Time on the Critical Path) (1)

Fig. 5. Macro-task graph of the automotive engine control software after inline expansion

Fig. 6. Exmaple source code of Conditional branch duplication

Fig. 7. Exmaple MTG of Conditional branch duplication

Fig. 8. Macro-task graph of the automotive engine control software after inline expansion and conditional branch duplication

IV. PERFORMANCE EVALUATION OF PARALLELIZED ENGINE

CONTROL CODE ON THE RP-X

This paper uses the embedded multi-core processor RP-X
developed by the authors with Hitachi and Renesas Electronics,
Tokyo Institute of Technology [13] to evaluate the
performance of the parallelized crankshaft control program
which is one of the most important engine control programs.

A. Evaluation Environment

The RP-X processor has eight 648MHz SH-4A general-
purpose processor cores, four 324MHz FEGA accelerator cores,
two matrix processor “MX-2” and the video processing unit
“VPU5”, as shown in Fig. 9. Each SH-4A core consists of a

32KB instruction cache, a 32KB data cache, a 16KB local
instruction/data memory (ILM and IDM in Fig.9.), a 64KB
distributed shared memory (URAM in Fig.9), centralized
shared memory (CSM) and a data transfer unit. The RP-X can
change the clock frequency of processor cores, such as
648MHz, 324MHz, 162MHz and 81MHz.

In this paper, the clock frequency of processor cores is set
to 81MHz in order to bring close to its actual automotive
control unit. Table I shows the minimum access costs of local
data memory (LDM), distributed shared memory (DSM), and
centralized shared memory (CSM). LDM access needs 1 clock
cycle, local DSM access needs 1 clock cycle, remote DSM
access needs clock cycles, and off-chip CSM access needs 8
clock cycles at 81MHz.

Fig. 9. The embedded multi-core processor RP-X

TABLE I. MINIMUM ACCESS COSTS FOR LDM, DSM, AND CSM

Type of Memory Latency(clock cycle)

LDM 1

DSM(local access) 2

DSM(remote access) 4

CSM 8

B. Performance Evaluation by the OSCAR Compiler

In this evaluation, a crank shaft control program which is
working on current automobiles is evaluated. LDM is used for
data which are accessed on only one core, DSM is used for
synchronization and off-chip CSM is used for others. More
parallelism is extracted to use selective inline expansion and
conditional branch duplication as described in section III.D.
The OSCAR compiler parallelizes this program using coarse
grain parallelization as described in section III.B and schedule
tasks to each processor cores statically utilizing task fusion as
described in section III.C. In this paper, only two SH-4A cores
on RP-X are used because next-generation automobiles plan to
use a dual-core processor. In this static schedule, all MTs on
the critical path are run by only CPU0.

Fig. 10 shows the result of the evaluation of the automotive
engine control software parallelized by the OSCAR Compiler.
The proposed method attains speedups of 1.54 times with 2
processor cores compared with the sequential execution. This
result is near the theoretical speedup ratio mentioned before
(1.6 times), though it is a little lower than the theoretical
speedup ratio because of thread generation overhead and
memory access overhead for shared memory. This result has
shown possibility that the engine control codes are parallelized
by automatic compiler on actual multi-cores and more
sophisticated control programs are applicable because
performance is improved using a multi-core processor.

Fig. 10. The evaluation of automatic parallelization of the automotive engine

control software on RP-X

V. CONCLUSIONS

This paper has proposed the parallelization scheme by the
OSCAR compiler of the automotive engine control software
which has been unable to parallelize before The original hand-
written sequential engine control program provided by Toyota
Motor Corporation which has a lot of small basic blocks and
conditional branches is restructured with selective inline
expansion and the conditional branch duplication in order to
exploit coarse grain task parallelism. The OSCAR compiler has
parallelized this program using coarse grain parallelization and
scheduled statically using task fusion. The parallelized program
has been evaluated on 2 processor cores on the embedded
multi-core RP-X with LDM, DSM and CSM because next-
generation automobiles plan to use a dual-core processor. This
evaluation shows performance improvement of 1.54 times
speed-up using 2 cores compared with sequential execution
automatically. This paper has succeeded to attain a close result
to the theoretical speedup ratio of 1.6. The result shows that the
OSCAR Compiler can exploit parallelism from the automotive
engine control software, which is composed of a series of
conditional branches, assignment statements and subroutine
calls. In addition, this result has possibility to realize more
sophisticated control unit for safety, comfortable and energy
efficient driving which current ECUs cannot attain because
performance of an ECU can be improved using a multi-core
processor.

ACKNOWLEDGMENT

This work was supported by Toyota Motor Corporation. I

would like to express appreciation to Mr. Mitsuo Sawada from
Toyota Motor Corporation.

REFERENCES

[1] K Seo, T Chung, H Heo, and K Yi. Coordinated implementation and
processing of a unified chassis control algorithm with multi-central
processing unit. JAUTO1346 IMechE Vol. 224 Part D: J. Automobile
Engineering, 2009.

[2] Kyungil Seo, Taeyoung Chung, Hyundong Heo, Kyongsu Yi, and
Naehyuck Chang, “An Investigation into Multi-Core Architectures to
Improve a Processing Performance of the Unified Chassis Control
Algorithms,” SAE Int.J.Passeng.Cars-Electron.Electr.Syst., pp. 53-62,
2010.

[3] Dinesh Padole, and Preeti Bajaj, “FUZZY ARBITER BASED MULTI
CORE SYSTEM-ON-CHIP INTEGRATED CONTROLLER FOR
AUTOMOTIVE SYSTEMS: A DESIGN APPROACH,” CCECE, pp.
1937-1940, 2008.

[4] Kasahara, H., Obata, M., Ishizaka, K., “Automatic coarse grain task
parallel processing on smp using openmp. Proc of The 13th International
Workship on Languages and Compilers for Parallel Computing, “ 2000

[5] M. Mase, Y. Onozaki, K. Kimura, and H. Kasahara, “Parallelizable c
and its performance on low power high performance multicore
processors,” In Proc. of 15th Workshop on Compilers for Parallel
Computing, Jul. 2010.

[6] The Motor Industry Software Reliability Association, “Guidelinesfor the
use ofthe C Language in Vehicle Based Software,“ Oct. 1998.

[7] The Motor Industry Software Reliability Association, “MISRA-C 2004
Guidelinesfor the use of the C language in critical systems,“ Oct. 2004.

[8] The Motor Industry Software Reliability Association, “MISRA-C 2013
Guidelinesfor the use of the C language in critical systems,“ Mar. 2013.

[9] K. Kimura, M. Mase, H. Mikami, T. Miyamoto, J. Shirako, and H.
Kasahara. Oscar api for real-time low-power multicores and its

performance on multicores and smpservers. Lecture Notes in Computer
Science, 5898:188-202, 2010.

[10] A. Hayashi, Y. Wada, T. Watanabe, T. Sekiguchi, M. Mase, J. Shirako,
K. Kimura, and H. Kasahara. Parallelizing compiler framework and api
for power reduction and software productivity of real-time
heterogeneous multicores. Lecture Notes in Computer Science,
6548:184-198, 2011.

[11] H. Kasahara, H. Honda, A. Mogi, A. Ogura, K. Fujiwara, and S. Narita,
“A multi-grain parallelizing compilation scheme for OSCAR(Optimally
scheduled advanced multiprocessor,” In Proceedings of the Fourth
International Workshop on Languages and Compilers for Parallel
Computing, pp. 283-297, August 1991.

[12] H. Honda, M. Iwata, and H. Kasahara, “Coarse grain parallelism
detection scheme of a Fortran program,” Trans. of IEICE, Vol.J73-D-1,
No.12, pp. 951-960, Dec. 1990.

[13] Y. Yuyama, M. Ito, Y. Kiyoshige, Y. Nitta, S. Matsui, O. Nishii, A.
Hasegawa, M. Ishikawa, T. Yamada, J. Miyakoshi, K. Terada, T. Nojiri,
M. Satoh, H. Mizuno, K. Uchiyama, Y. Wada, K. Kimura, H. Kasahara,
and H. Maejima, “A 45nm 37.3gops/w heterogeneous multi-core soc,”
IEEE International Solid-State Circuits Conference, ISSCC, pp. 100-101,
Feb. 2010.

