
Annotatable Systrace: An Extended Linux
ftrace for Tracing a Parallelized Program

Daichi Fukui Mamoru Shimaoka Hiroki Mikami Dominic Hillenbrand Hideo Yamamoto
Keiji Kimura Hironori Kasahara

Waseda University, Japan
{fukui, shimaoka, hiroki, dominic, hideo}@kasahara.cs.waseda.ac.jp, kimura@apal.cs.waseda.ac.jp,

kasahara@waseda.jp

Abstract
Investigation of the runtime behavior is one of the most im-
portant processes for performance tuning on a computer sys-
tem. Profiling tools have been widely used to detect hot-
spots in a program. In addition to them, tracing tools produce
valuable information especially from parallelized programs,
such as thread scheduling, barrier synchronizations, context
switching, thread migration, and jitter by interrupts. Users
can optimize a runtime system and hardware configuration
in addition to a program itself by utilizing the attained in-
formation. However, existing tools provide information per
process or per function. Finer information like task- or loop-
granularity should be required to understand the program
behavior more precisely. This paper has proposed a tracing
tool, Annotatable Systrace, to investigate runtime execution
behavior of a parallelized program based on an extended
Linux ftrace. The Annotatable Systrace can add arbitrary an-
notations in a trace of a target program. The proposed tool
exploits traces from 183.equake, 179.art, and mpeg2enc on
Intel Xeon X7560 and ARMv7 as an evaluation. The evalu-
ation shows that the tool enables us to observe load imbal-
ance along with the program execution. It can also generate
a trace with the inserted annotations even on a 32-core ma-
chine. The overhead of one annotation on Intel Xeon is 1.07
us and the one on ARMv7 is 4.44 us, respectively.

Categories and Subject Descriptors D.1.3 [Software]:
Programming Techniques—Parallel programming

Keywords Automatic parallelization, Linux, ftrace, Sys-
trace, Multicore

1. Introduction
Multicore processors have been employed in a lot of plat-
forms from embedded devices to super computers. In order
to utilize these multicore processors efficiently, it is impor-
tant to parallelize a software appropriately.

Understanding the runtime behavior of a parallelized pro-
gram is an essential task for performance tuning[1]. Widely
used profiling tools can provide hot-spot information of a
program. However, investigation of the runtime behavior
along with the program execution is still a difficult work
even using them. Trace information and its visualization
tools have been used to analyze such kind of the runtime
behavior. For instance, a Gantt chart of a parallelized pro-
gram provides helpful information to analyze the program
behavior and bottle-necks since it shows the progress of the
tasks in the target program as a graph.

Android Systrace is one of the visualization tools for pro-
gram traces, which captures program execution and system
events like context switching and interruptions on an An-
droid device[2]. The trace is shown as a Gantt chart. The
trace information is exploited by Linux ftrace system[3][4].
Ftrace is a tool to trace Linux kernel events.

Intel VTune[5] and perf timechart[6] are also well known
visualization tools. Both of them can trace system-level
threads and draw Gantt charts. However, VTune works only
on Intel processors, thus it cannot be applied to other proces-
sors. Perf timechart works on any Linux platforms and does
not depend on their processor architecture, while it cannot
trace task-level fine-grained information of a parallelized
program. These tools can capture the information per thread
or per function. However, finer information, such as loops
and basic blocks, cannot be captured.

This paper has proposed a tracing tool, Annotatable Sys-
trace, to analyze the parallelized program based on Linux
ftrace. It can preserve the portability on different kinds of
processor architectures. Here, a user can embed annotations
in a program. They are sent to a newly developed kernel
module through character device files. The kernel module
receives the annotations and stores them in buffers temporar-

ily. Then, it sends them to the ftrace system. The ftrace sys-
tem receives the annotations and integrates them with thread
IDs, timestamps, and duration of each thread. After inte-
grating them, the ftrace system creates a log file. Finally, an
HTML file is generated from the log file. Reading the gen-
erated HTML file enables fine grain analysis of the behavior
of tasks inside the parallelized program.

We evaluate the tracing tool with parallelized programs
compiled by the OSCAR automatic parallelizing compiler.
We also evaluate the overhead of the tool.

The main contributions of this paper are:

• Annotatable systrace helps to analyze runtime behavior
of a task-level parallelized program in a fine grain man-
ner. This is because annotations as strings in a trace are
embedded using the extended Linux ftrace system.

• The evaluation result shows the proposed tracing tool is
successfully applied up to 32 cores. It can be realized
by preparing an interface for each core to avoid access
contentions among cores.

The rest of this paper is organized as follows. Section
2 presents an overview of the Linux ftrace system. Sec-
tion 3 gives a general concept of the proposed tracing tool.
In Section 4, the OSCAR compiler is explained. Section 5
describes the evaluation environment and the target bench-
marks. The proposed tool is applied to the OSCAR compiler
to evaluate performance in Section 6. Finally, Section 7 gives
conclusion.

2. Tracing a Parallelized Program using
Linux ftrace

This section describes an overview of Linux ftrace and An-
droid Systrace.

2.1 Linux ftrace
Linux ftrace is a tracing tool to capture kernel events. Ftrace
becomes available by compiling the kernel with the follow-
ing option enabled.

CONFIG_FUNCTION_TRACER

In order to access the ftrace system, debugfs file system
must be mounted as following:

mount -t debugfs nodev /sys/kernel/debug/

The traceable events by this tool are listed in

/sys/kernel/debug/tracing/events/

In this paper, the following kernel events are enabled to trace
context switching:

echo 1 > events/sched/sched_wakeup/enable

echo 1 > events/sched/sched_switch/enable

These events are also enabled to trace thread migration.

2.2 Android Systrace
Android Systrace is included in Android SDK. This tool
generates an HTML file from the captured kernel events by
Linux ftrace to visualize them. A user can easily investigate
the progress of the target program and other kernel events on
Google Chrome web browser.

3. Annotatable Systrace
This section describes an overview of the proposed tracing
tool, Annotatable Systrace. We extend Linux ftrace to trace
arbitrary strings embedded in a user program together with
other kernel events. In this paper, a target string to be traced
is called ‘annotation’. The runtime behavior of a parallel task
created by a parallelizing compiler can be easily traced by
embedding ‘task name’ as an annotation by the compiler.

Annotatable Systrace collects annotations from a paral-
lelized program. Then, it sends them to the ftrace system
in the kernel. The ftrace system integrates annotations with
other kernel data such as context switching, timestamps and
thread IDs. A Gantt chart is drawn in an HTML file from
the integrated data. The HTML file includes thread IDs and
the name of the program as well as parallel tasks. The ar-
chitectural overview of Annotatable Systrace is described in
Figure 1.

A new member is added to the task_struct structure
in the Linux kernel. The data structure contains all the in-
formation about a process or a task. The new member keeps
annotations sent from a user program.

Figure 1 shows a data flow of annotations from an ap-
plication to the extended ftrace system in the kernel. A user
program sends annotations embedded in it to character de-
vice files[7] through write system calls. The character de-
vice files are created under /dev/ file system. A kernel mod-
ule controls them. In the kernel module, a pointer to an
instance of task_struct structure containing the sent an-
notations is passed to trace_sched_switch function. The
trace_sched_switch function generates a trace log.

A parallelized application to be traced can consist of
multiple threads. In addition, multiple applications can run
on a processor simultaneously. Therefore, if there is only a
single character device file, it can become a critical section
in sending annotations from multiple threads or multiple
applications. In order to avoid making a critical section,
multiple device files are created as many as the cores on a
processor. Buffers to store the annotations are also created
inside the kernel module as many as the cores to avoid
making the critical section.

A thread must determine the device file associated with
the core on which it executes, since the device file is assigned
on the core dynamically. The device file manager resolves
association between the thread and the device file by provid-
ing the core id acquired from sched_getcpu function called
by the thread. Note that even when multiple threads are as-
signed on a core, only one device file for the core sufficiently

userspace	kernelspace	

kernel	

trace_sched_switch	

applica1on	
write	 (thread	 0)	

write	 (thread	 m)	

device	 file	
/dev/cdev_char	 0	

/dev/cdev_char	 n	

/dev/cdev_char	 1	 write	 (thread	 1)	

buffer	 0	

buffer	 1	

buffer	 n	

device	 file	 manager	

smp_processor_id	

Figure 1. An overview of Annotatable Systrace

works without mutex-locks since only one thread is executed
on the core at a time. The buffers inside the kernel mod-
ule are also assigned to the cores by smp_processor_id

macro.

4. OSCAR Multi-grain Parallelizing
Compiler

This section introduces an overview of OSCAR multi-grain
parallelizing compiler[8], which parallelizes target programs
to be traced in this paper.

The OSCAR compiler exploits multi-grain parallelism
from a C or Fortran program. Multi-grain parallelism con-
sists of coarse grain parallelism, loop iteration level paral-
lelism, and statement level near-fine grain parallelism. In
exploiting the parallelism, the compiler first divides a se-
quential program into coarse grain tasks called macro tasks
(MTs), which can be a basic block, a loop, or a subroutine.
The compiler then analyzes both of control and data depen-
dencies among the MTs, and a macro tasks graph (MTG)
is generated after the analysis. The compiler generates par-
allelized code by assigning MTs statically when there are
only data dependencies in the MTG. When there are control
dependencies in the MTG, the compiler embeds a dynamic
scheduling code in a parallelized program. When the paral-
lelized program starts, OpenMP threads are created as many
as target cores. The threads are synchronized via shared
memory. They are joined in the end of the program.

The compiler embeds annotations to trace MTs and syn-
chronizations.

5. Evaluation Environment
We evaluate the Annotatable Systrace on HA8000/RS440
with Intel Xeon and Nexus7 2013 with ARM multicore
processor. Specifications of evaluated machines are shown

Table 1. Specification of HA8000/RS440
Name Hitachi HA8000/RS440
OS Ubuntu 12.04.2 LTS (64bit, Linux 3.2.52)
CPU Intel Xeon X7560 (2.27 GHz)
of cores 32 (8-core x 4-socket)
L2 Cache 256KB/core
L3 Cache 24MB/core
Compiler GCC-4.6.3
RAM 32GB

Table 2. Specification of Nexus7 2013
Name Nexus7 2013
OS Android 4.3 (64bit, Linux 3.4.0)
CPU Qualcomm Snapdragon S4 Pro (1.7 GHz)
of cores 4
L2 Cache 2MB
Compiler arm-linux-gnueabihf-gcc-4.6.3
RAM 2GB

Figure 2. Load imbalance of parallelized 183.equake on
Nexus7

in Table1 and Table2, respectively. As target applications,
183.equake, 179.art from SPEC CPU2000[9], and mpeg2enc
from mediabench[10] are traced for the evaluation. They are
parallelized by the OSCAR compiler.

6. Evaluation Result
The evaluation is carried out to demonstrate the capability
of the Annotatable Systrace using two scenarios: detecting
load imbalance and parallelization on 32-core platform. The
overhead of write system calls for annotations is also mea-
sured.

6.1 Detecting Load Imbalance
Figure 2 shows the execution trace of 183.equake paral-
lelized for four cores, from CPU0 to CPU3, on Nexus7.
‘loop48’ in the figure is an MT, each of which is a sub-chunk
of a parallelized loop. A green block labeled ‘barrier’ shows
that the core is in a barrier synchronization.

The starting points of the barrier synchronizations on
CPU0, CPU1, and CPU2 are different from each other ac-
cording to the trace result. This situation shows the load im-
balance occurred among those cores. This is because while-

barriers

I/O

barriers

(a) The first half of the program behavior of 183.equake on
32 cores

barriers

I/O

barriers

computation
& barriers

(b) The second half of the program behavior of 183.equake
on 32 cores

Figure 3. The trace of 183.equake on 32 cores

loops in ‘loop48’ have fluctuations in the number of loop
iterations.

Such the trace result can lead us to further optimizations,
such as dividing MTs into finer sub-chunks to reduce load
imbalance. Clock gating or power gating can be applied
to the cores during barrier synchronizations if the target
processor has a capability of power control.

6.2 Parallelization on 32-core Platform
Figure3(a) and Figure3(b) show the execution trace of
183.equake parallelized for 32 cores on HA8000/RS440.
The first half of the program is mainly used for the initial-
ization of the program including file I/O. There is a paral-
lelized computational part on 32 cores at the second half of
the program. These figures clearly show that the Annotat-
able Systrace can successfully generate an execution trace
with arbitrary annotations even with 32 cores by providing
a dedicated character device file and its associated buffer for
each core.

6.3 Overhead
We also measure the overhead of the Annotatable Systrace.
The measurement result for calling one write system call for
an annotation is 1.07us on HA8000/RS440, and 4.44us on
Nexus7.

Table 3. Total execution time of each program with and
without tracing on RS440[s]

systrace ftrace w/o trace
183.equake 0.101 0.076 0.076
179.art 1.13 0.717 0.714
mpeg2enc 0.442 0.187 0.185

Table 4. Total execution time of each program with and
without tracing on Nexus7[s]

systrace ftrace w/o trace
183.equake 1.47 1.44 1.47
179.art 2.23 1.90 1.83
mpeg2enc 1.15 0.289 0.291

In order to understand the impact of the overhead for a
write system call in a parallelized program, the total execu-
tion time of each benchmark program with and without trac-
ing on HA8000/RS440 and Nexus7 is measured as in Table3
and Table4. The benchmark programs are parallelized for
32 cores for HA8000/RS440, and for four cores for Nexus7.
In the tables, ‘systrace’ stands for tracing with Annotatable
Systrace, ‘ftrace’ stands for tracing with original ftrace, and
‘w/o trace’ stands for without tracing, respectively.

From Table3, 183.equake shows the lowest overhead on
HA8000 /RS440. ‘systrace’ takes 1.32x execution time com-
paring with ‘w/o trace’. On the other hand, mpeg2enc shows
the highest overhead, such as 2.39x execution time for ‘sys-
trace’ comparing with ‘w/o trace’.

Similarly, from Table4 for Nexus7, 183.equake has little
overhead, while mpeg2enc takes 3.95x execution time for
‘systrace’ comparing with ‘w/o trace’.

The overhead of the Annotatable Systrace depends on the
frequency of the write system calls for annotations. This
heavily depends on the task granularity of the program.
This is the main reason for the differences of the overheads
among benchmark programs. A user should consider the
relationship between task granularity and the overhead.

7. Conclusion
This paper has proposed the Annotatable Systrace to trace
a parallelized program based on Linux ftrace. Annotations
inserted in a parallelized program are integrated with other
kernel events. The experimental evaluation was carried out
on HA8000/RS440 and Nexus7 with benchmark programs
parallelized by the OSCAR compiler. The evaluation result
showed the proposed tool can successfully capture load im-
balance along with the progress of tasks. Furthermore, the
tool can trace even on the 32 core machine by providing its
own dedicated annotation interface for each core.

References
[1] Eileen Kramer, and John T. Stasko: The Visualization of Parallel

Systems: An Overview, Journal of Parallel and Distributed Computing,
1993

[2] Google: Android Systrace,
http://developer.android.com/tools/help/systrace.html, 2015

[3] Jake Edge: A look at ftrace, http://lwn.net/Articles/322666/, 2009

[4] Steven Rostedt: Debugging the kernel using Ftrace - part1,
http://lwn.net/Articles/365835/, 2009

[5] Intel Corporation: Intel VTune Amplifier XE 2015,
https://software.intel.com/en-us/intel-vtune-amplifier-xe

[6] Stephane Eranian, Eric Gouriou, Tipp Moseley, Willem
de Bruijn: Tutorial - Linux kernel profiling with perf
http://perf.wiki.kernel.org/index.php/Tutorial, 2015

[7] Ariane Keller: Kernel Space - User Space Interfaces,
http://people.ee.ethz.ch/ arkeller/linux/kernel user space howto.html

[8] Obata M., Shirako J., Kaminaga H., Ishizaka K., Kasahara H.:
Hierarchical parallelism control for multigrain parallell processing,
LCPC 2002

[9] SPEC CPU 2000: https://www.spec.org/

[10] Chunho Lee, Miodrag Potkonjak, William H. Mangione-Smith:
MedhiaBench: A Tool for Evaluating and Synthesizing Multimedia
and Communications Systems, 1997

