OSCAR Low Power Multicores, Compiler and API for Green Computing

Hironori Kasahara
Professor, Dept. of Computer Science & Engineering
Director, Advanced Multicore Processor Research Institute
Waseda University, Tokyo, Japan
IEEE Computer Society Board of Governors
URL: http://www.kasahara.cs.waseda.ac.jp/
Multi-core Everywhere

Multi-core from embedded to supercomputers

- Consumer Electronics (Embedded)
 Mobile Phone, Game, Digital TV, Car Navigation, DVD, Camera,
 IBM/ Sony/ Toshiba Cell, Fujitsu FR1000,
 NEC/ARMMPCore&MP211, Panasonic Uniphier,
 Renesas SH multi-core(4 core RP1, 8 core RP2)
 Tilera Tile64 &100, SPI Storm-1(16 VLIW cores)

- PCs, Servers
 Intel Quad Xeon, Core 2 Quad, Montvale, Nehalem(8cores),
 80 cores, Larrabee(32cores), SCC(48cores), Night Corner
 AMD Quad Core Opteron (8, 12 cores)

- WSs, Deskside & Highend Servers
 IBM(Power4,5,6,7), Sun (SparcT1,T2), Fujitsu SPARC64fx8

- Supercomputers
 Next Generation Supercomputer “KEI”: 10PFLOPS
 IBM Blue Gene/L: 360TFLOPS, 2005,
 BG/Q :20PFLOPS.2011,
 BlueWaters: Effective 1PFLOPS, Julty2011, NCSA UIUC

High quality application software, Productivity, Cost performance, Low power consumption are important
Ex, Mobile phones, Games

Compiler cooperated multi-core processors are promising to realize the above futures
METI/NEDO National Project

Multi-core for Real-time Consumer Electronics

<Goal> R&D of compiler cooperative multi-core processor technology for consumer electronics like Mobile phones, Games, DVD, Digital TV, Car navigation systems.

<Period> From July 2005 to March 2008

<Features>
- Good cost performance
- Short hardware and software development periods
- Low power consumption
- Scalable performance improvement with the advancement of semiconductor
- Use of the same parallelizing compiler for multi-cores from different vendors using newly developed API

API: Application Programming Interface

(2005.7〜2008.3)**

**Hitachi, Renesas, Fujitsu, Toshiba, Panasonic, NEC
OSCAR Multi-Core Architecture

CMP₀ (chip multiprocessor 0)

CPU

PE₀

PE₁

PEₙ

LPM/ I-Cache

LDM/ D-cache

DSM

DTC

Network Interface

Intra-chip connection network
(Multiple Buses, Crossbar, etc)

CSM / L2 Cache

Inter-chip connection network
(Crossbar, Buses, Multistage network, etc)

CSM: central shared mem.

DPM: distributed shared mem.

DTC: Data Transfer Controller

LDM: local data mem.

LPM: local program mem.

FVR: frequency / voltage control register
Renesas-Hitachi-Waseda 8 core RP2 Chip Photo and Specifications

<table>
<thead>
<tr>
<th>Process Technology</th>
<th>90nm, 8-layer, triple-Vth, CMOS</th>
</tr>
</thead>
</table>
| Chip Size | 104.8mm²
(10.61mm x 9.88mm) |
| CPU Core Size | 6.6mm²
(3.36mm x 1.96mm) |
| Supply Voltage | 1.0V–1.4V (internal),
1.8/3.3V (I/O) |
| Power Domains | 17 (8 CPUs,
8 URAMs, common) |

IEEE ISSCC08: Paper No. 4.5, M.Ito, … and H. Kasahara, “An 8640 MIPS SoC with Independent Power-off Control of 8 CPUs and 8 RAMs by an Automatic Parallelizing Compiler”
8 Core RP2 Chip Block Diagram

LCPG: Local clock pulse generator
PCR: Power Control Register
CCN/BAR: Cache controller/Barrier Register
URAM: User RAM (Distributed Shared Memory)
Demo of NEDO Multicore for Real Time Consumer Electronics at the Council of Science and Engineering Policy on April 10, 2008

CSTP Members

Prime Minister: Mr. Y. FUKUDA
Minister of State for Science, Technology and Innovation Policy: Mr. F. KISHIDA
Chief Cabinet Secretary: Mr. N. MACHIMURA
Minister of Internal Affairs and Communications: Mr. H. MASUDA
Minister of Finance: Mr. F. NUKAGA
Minister of Education, Culture, Sports, Science and Technology: Mr. K. TOKAI
Minister of Economy, Trade and Industry: Mr. A. AMARI
1987 OSCAR (Optimally Scheduled Advanced Multiprocessor)
OSCAR (Optimally Scheduled Advanced Multiprocessor)
MTG of Su2cor-LOOPS-DO400

- Coarse grain parallelism PARA_ALD = 4.3
Data-Localization
Loop Aligned Decomposition

- Decompose multiple loop (Doall and Seq) into CARs and LRs considering inter-loop data dependence.
 - Most data in LR can be passed through LM.
 - LR: Localizable Region, CAR: Commonly Accessed Region

```plaintext
C RB1(Doall)
DO I=1,101
A(I)=2*I
ENDDO

C RB2(Doseq)
DO I=1,100
B(I)=B(I-1)
+A(I)+A(I+1)
ENDDO

RB3(Doall)
DO I=2,100
C(I)=B(I)+B(I-1)
ENDDO
```
Data Localization

MTG

MTG after Division

A schedule for two processors
An Example of Data Localization for Spec95 Swim

(a) An example of target loop group for data localization

(b) Image of alignment of arrays on cache accessed by target loops

Cache line conflicts occurs among arrays which share the same location on cache

(b) Image of alignment of arrays on cache

An example of data localization for Spec95 Swim

DO 200 J=1,N
DO 200 I=1,M
 UNEW(I+1,J) = UOLD(I+1,J) +
 1 TDTS8*(Z(I+1,J+1)+Z(I+1,J))*(CV(I+1,J+1)+CV(I,J+1)+CV(I,J))
 2 +CV(I+1,J)*TDTS8*(H(I+1,J)-H(I,J))
 VNEW(I,J+1) = VOLD(I,J+1) -
 1 *TDTS8*(Z(I+1,J+1)+Z(I,J+1))
 2 *(CU(I+1,J+1)+CU(I,J+1)+CU(I,J)+CU(I+1,J))
200 CONTINUE

DO 210 J=1,N
 UNEW(1,J) = UNEW(M+1,J)
 VNEW(M+1,J) = VNEW(1,J+1)
210 CONTINUE

DO 300 J=1,N
DO 300 I=1,M
 UOLD(I,J) = U(I,J) + ALPHA*(UNEW(I,J)-2.*U(I,J)+UOLD(I,J))
 VOLD(I,J) = V(I,J) + ALPHA*(VNEW(I,J)-2.*V(I,J)+VOLD(I,J))
 POLD(I,J) = P(I,J) + ALPHA*(PNEW(I,J)-2.*P(I,J)+POLD(I,J))
300 CONTINUE

(a) An example of target loop group for data localization

(b) Image of alignment of arrays on cache

Cache line conflicts occurs among arrays which share the same location on cache

(b) Image of alignment of arrays on cache accessed by target loops

Cache size

0 1 2 3 4MB

UN VN PN VO
PO CU CV Z
P UN VN PN VO

U V P UN
PO VN PN VO

VOLD(I,J) = V(I,J) + ALPHA*(VNEW(I,J)-2.*V(I,J)+VOLD(I,J))

POLD(I,J) = P(I,J) + ALPHA*(PNEW(I,J)-2.*P(I,J)+POLD(I,J))

UN VN PN VO
PO CU CV Z
P UN VN PN VO

U V P UN
PO VN PN VO

C h a c e l i n e c o n f l i c t s o c c u r s a m o n g a r r a y s w h i c h s h a r e t h e s a m e l o c a t i o n o n c a c h e
Data Layout for Removing Line Conflict Misses by Array Dimension Padding

Declaration part of arrays in spec95 swim

before padding

PARAMETER (N1=513, N2=513)

COMMON U(N1,N2), V(N1,N2), P(N1,N2),
* UNEW(N1,N2), VNEW(N1,N2),
1 PNEW(N1,N2), UOLD(N1,N2),
* VOLD(N1,N2), POLD(N1,N2),
2 CU(N1,N2), CV(N1,N2),
* Z(N1,N2), H(N1,N2)

after padding

PARAMETER (N1=513, N2=544)

COMMON U(N1,N2), V(N1,N2), P(N1,N2),
* UNEW(N1,N2), VNEW(N1,N2),
1 PNEW(N1,N2), UOLD(N1,N2),
* VOLD(N1,N2), POLD(N1,N2),
2 CU(N1,N2), CV(N1,N2),
* Z(N1,N2), H(N1,N2)
Power Reduction by Power Supply, Clock Frequency and Voltage Control by OSCAR Compiler

- Shortest execution time mode

- Realtime processing mode with deadline constraints
Generated Multigrain Parallelized Code
(The nested coarse grain task parallelization is realized by only OpenMP “section”, “Flush” and “Critical” directives.)

1st layer

2nd layer

Distributed scheduling code

Centralized scheduling code
Compilation Flow Using OSCAR API

OSCAR API for Real-time Low Power High Performance Multicores
Directives for thread generation, memory, data transfer using DMA, power managements

Waseda Univ. OSCAR Parallelizing Compiler
- Coarse grain task parallelization
- Global data Localization
- Data transfer overlapping using DMA
- Power reduction control using DVFS, Clock and Power gating

Hitachi, Renesas, Fujitsu, Toshiba, Panasonic, NEC

OSCAR: Optimally Scheduled Advanced Multiprocessor API : Application Program Interface
OSCAR API

Now Open! (http://www.kasahara.cs.waseda.ac.jp/)

• Targeting mainly realtime consumer electronics devices
 – embedded computing
 – various kinds of memory architecture
 • SMP, local memory, distributed shared memory, ...

• Developed with Japanese 6 companies
 – Fujitsu, Hitachi, NEC, Toshiba, Panasonic, Renesas
 – Supported by METI/NEDO

• Based on the subset of OpenMP
 – very popular parallel processing API
 – shared memory programming model

• Six Categories
 – Parallel Execution (4 directives from OpenMP)
 – Memory Mapping (Distributed Shared Memory, Local Memory)
 – Data Transfer Overlapping Using DMA Controller
 – Power Control (DVFS, Clock Gating, Power Gating)
 – Timer for Real Time Control
 – Synchronization (Hierarchical Barrier Synchronization)
Performance of OSCAR Compiler on IBM p6 595 Power6 (4.2GHz) based 32-core SMP Server

OpenMP codes generated by OSCAR compiler accelerate IBM XL Fortran for AIX Ver.12.1 about 3.3 times on the average

Compile Option:

(*2) Sequential: -O5 –q64 –qarch=pwr6, XLF: -O5 –q64 –qarch=pwr6 –qsmp=auto, OSCAR: -O5 –q64 –qarch=pwr6 –qsmp=noauto

(Others) Sequential: -O5 –qarch=pwr6, XLF: -O5 –qarch=pwr6 –qsmp=auto, OSCAR: -O5 –qarch=pwr6 –qsmp=noauto
Performance of OSCAR Compiler Using the Multicore API on Intel Quad-core Xeon

- OSCAR Compiler gives us 2.1 times speedup on the average against Intel Compiler ver.10.1
Performance of OSCAR compiler on 16 cores SGI Altix 450 Montvale server

Compiler options for the Intel Compiler:
- for Automation parallelization: -fast -parallel.
- for OpenMP codes generated by OSCAR: -fast -openmp

• OSCAR compiler gave us 2.3 times speedup against Intel Fortran Itanium Compiler revision 10.1
Performance of OSCAR compiler on NEC NaviEngine (ARM-NEC MPcore)

- OSCAR compiler gave us 3.43 times speedup against 1 core on ARM/NEC MPCore with 4 ARM 400MHz cores

Compile Option: -O3
Performance of OSCAR Compiler Using the multicore API on Fujitsu FR1000 Multicore

3.38 times speedup on the average for 4 cores against a single core execution
Performance of OSCAR Compiler Using the Developed API on 4 core (SH4A) OSCAR Type Multicore

3.31 times speedup on the average for 4 cores against 1 core
Processing Performance on the Developed Multicore Using Automatic Parallelizing Compiler

Speedup against single core execution for audio AAC encoding

*) Advanced Audio Coding
Power Reduction by OSCAR Parallelizing Compiler for Secure Audio Encoding

AAC Encoding + AES Encryption with 8 CPU cores

Without Power Control
(Voltage : 1.4V)

With Power Control
(Frequency,
Resume Standby:
Power shutdown &
Voltage lowering 1.4V-1.0V)

Avg. Power
Without Power Control
5.68 [W]

88.3% Power Reduction
Avg. Power
With Power Control
0.67 [W]
Power Reduction by OSCAR Parallelizing Compiler for MPEG2 Decoding

MPEG2 Decoding with 8 CPU cores

Without Power Control (Voltage : 1.4V)

With Power Control (Frequency, Resume Standby: Power shutdown & Voltage lowering 1.4V-1.0V)

Avg. Power 5.73 [W] 73.5% Power Reduction Avg. Power 1.52 [W]
Low Power High Performance Multicore Computer with Solar Panel

- **Clean Energy Autonomous**
- **Servers operational in deserts**
OSCAR API-Applicable
Heterogeneous Multicore Architecture

- DTU
 - Data Transfer Unit
- LPM
 - Local Program Memory
- LDM
 - Local Data Memory
- DSM
 - Distributed Shared Memory
- CSM
 - Centralized Shared Memory
- FVR
 - Frequency/Voltage Control Register
Heterogeneous Multicore RP-X
presented in SSCC2010 Processors Session on Feb. 8, 2010

Cluster #0
- SH-4A
- SHwy#0 (Address=40, Data=128)
 - DBSC #0
 - DMA #0
 - VPU5

SHwy#2 (Address=32, Data=64)
 - PCI exp
 - SATA
 - SPU2
 - LBSC

Cluster #1
- SH-4A
- SHwy#1 (Address=40, Data=128)
 - FE #0-3
 - DMA #1
 - DBSC #1
 - MX2 #0-1

SHwy#2 (Address=32, Data=64)
 - HPB

Renesas, Hitachi, Tokyo Inst. Of Tech. & Waseda Univ.
Parallel Processing Performance Using OSCAR Compiler and OSCAR API on RP-X (Optical Flow with a hand-tuned library)

CPU performs data transfers between SH and FE

Speedups against a single SH processor

1 SH: 1
2 SH: 2.29
4 SH: 3.09
8 SH: 5.4
2 SH + 1 FE: 18.85
4 SH + 2 FE: 26.71
8 SH + 4 FE: 32.65

3.5 [fps]
111 [fps]
Power Reduction in a real-time execution controlled by OSCAR Compiler and OSCAR API on RP-X (Optical Flow with a hand-tuned library)

Without Power Reduction

With Power Reduction by OSCAR Compiler

70% of power reduction

Average: 1.76[W] → Average: 0.54[W]

1 cycle: 33[ms] → 30[fps]
Green Computing Systems R&D Center
Waseda University
Supported by METI (Mar. 2011 Completion)

<R & D Target>
Hardware, Software, Application for Super Low-Power Manycore Processors
➢ More than 64 cores
➢ Natural air cooling (No fan)
 Cool, Compact, Clear, Quiet
➢ Operational by Solar Panel

<Industry, Government, Academia>
Fujitsu, Hitachi, Renesas, Toshiba, NEC, etc

<Ripple Effect>
➢ Low CO₂ (Carbon Dioxide) Emissions
➢ Creation Value Added Products
 ➢ Consumer Electronics, Automobiles, Servers

Beside Subway Waseda Station, Near Waseda Univ. Main Campus
Conclusions

- OSCAR compiler cooperative real-time low power multicore with high effective performance, short software development period will be important in wide range of IT systems from consumer electronics to robotics and automobiles.
- The OSCAR compiler with API allow us boosts up the performance of various multicores and servers and reduce consumed power significantly
 - 3.3 times on IBM p595 SMP server using Power6
 - 2.1 times on Intel Quad core Xeon
 - 5.7 times speedup on the 8 core (SH4A) multicore RP2 for AAC encoding against one core
 - 32.7 times on RP-X hetero-multicore using 8 SH4As and 4 DRP accelerators for optical flow against one SH core
 - 70% power reduction on RP2 for realtime optical flow.
- OSCAR API has been extended for heterogeneous multicores and for manycores.