
An Android Systrace Extension for Tracing
Wakelocks

Bui Duc Binh
Department of Computer Science and Engineering

Waseda University
Tokyo, Japan

binh@kasahara.cs.waseda.ac.jp

Kimura Keiji
Department of Computer Science and Engineering

Waseda University
Tokyo, Japan

kimura@apal.cs.waseda.ac.jp

Abstract—Most of Android users have experienced issues with
the battery life. One cause of battery drainage is the usage of the
Wakelocks, which keep the CPU in working mode to enable
applications to perform work in the background, such as
communicating with their servers or collecting GPS information.
Without acquiring the Wakelocks, the application might degrade
its user experience. For instance, an SNS application might receive
messages from other users with delay. However, the improper
usage of Wakelocks could result in poor battery life. Being aware
of the behavior and the usage of Wakelocks in particular
applications in real-time can help Android developers to solve the
problem of improper Wakelock usage. This paper introduces a
tool for fine-grain tracing of both application and kernel
Wakelocks by extending the Android Systrace. This tool enables
developers to have a more detailed view of their application
Wakelocks as well as the system Wakelocks so that they can
achieve better power optimization.

Keywords—Android; Wakelock; Tracing tool; Systrace; Power
consumption

I.� INTRODUCTION
Android smart devices have become one of the most exciting

trends in the global market due to their affordable price but
powerful performance. However, the demand for high
performance leads to an enormous amount of power dissipation
in Android devices. Since the capacity of the battery is limited,
many Android users face issues with poor battery life, degrading
the user experience. Therefore, it is important to analyze the
power consumption problem on the Android platform.

One cause of the battery draining problem is that there are
too many processes running in the background, which are
invisible to users but still use a lot of system resources. These
processes consume battery life even when the device screen is
turned off. In order to have the background processes work
properly, it is necessary to keep the CPU in running mode. The
Android OS provide a mechanism called Wakelock [1] [2] to
fulfill that requirement. An application must acquire a Wakelock
to force the device to stay on when it wants to start a process in
the background; otherwise, the process might not function
correctly and affect the user experience as the system might
unexpectedly enter low power mode. When a Wakelock is
acquired, the system keeps the device awake according to the
level requested. There are 4 types of Wakelock as shown in
Table 1.

TABLE �: 4 Types of Wakelock

Type CPU Screen Keyboard

PARTIAL_WAKE_LOCK ON OFF OFF

SCREEN_DIM_WAKE_LOCK ON DIM OFF

SCREEN_BRIGHT_WAKE_LOCK ON BRIGHT OFF

FULL_WAKE_LOCK ON BRIGHT BRIGHT

The important point here is that a Wakelock must be released
as soon as possible when the application no longer needs it to
perform any task. Unreleased Wakelocks, requiring too many
Wakelocks, or acquiring Wakelocks for a long time would
significantly affect the device battery life. Therefore, analyzing
the usage of the Wakelock helps developers to understand
unexpected battery drainage and support them in debugging and
optimizing their Android applications.

Previous works have taken several approaches to manage
Wakelocks. In [11] [14] [15], the authors analyze the application
data flow, detect a Wakelock bug at compile time, and notify
developers of the bugs. [12] and [13] are attempts to detect
Wakelock misuse at runtime and notify users of the detections.
However, none of these works could show an overall picture of
Wakelock usage for a given period of time, which, we believe,
is extremely important to analyze the Android Wakelock. This
paper introduces a tool to trace Android Wakelocks at a fine-
grained level by extending the Android Systrace tool [3]. This
tool enables developers to have a more detailed understanding
of their application Wakelocks as well as the system Wakelocks
in order to achieve better power optimization.

The rest of this paper is structured as follows. Section 2
presents the proposed tool architecture. Section 3 shows the
evaluation result, and Section 4 gives the conclusion of the paper.

II.� ARCHITECTURE

A.� Android Systrace
The tool we are developing is based on the Android Systrace

tool, which helps to analyze the performance of the application
and the Android system by collecting trace data from the
Android kernel and application threads. This data can help
developers to understand the behavior of the Android system
and applications processes. The combined data is displayed in a

2016 IEEE International Conference on Computational Science and Engineering, IEEE International Conference on Embedded

and Ubiquitous Computing, and International Symposium on Distributed Computing and Applications to Business, Engineering

and Science

978-1-5090-3593-9/16 $31.00 © 2016 IEEE

DOI 10.1109/.36

146

2016 IEEE International Conference on Computational Science and Engineering, IEEE International Conference on Embedded

and Ubiquitous Computing, and International Symposium on Distributed Computing and Applications to Business, Engineering

and Science

978-1-5090-3593-9/16 $31.00 © 2016 IEEE

DOI 10.1109/.36

146

2016 IEEE International Conference on Computational Science and Engineering, IEEE International Conference on Embedded

and Ubiquitous Computing, and International Symposium on Distributed Computing and Applications to Business, Engineering

and Science

978-1-5090-3593-9/16 $31.00 © 2016 IEEE

DOI 10.1109/.36

146

2016 IEEE International Conference on Computational Science and Engineering, IEEE International Conference on Embedded

and Ubiquitous Computing, and International Symposium on Distributed Computing and Applications to Business, Engineering

and Science

978-1-5090-3593-9/16 $31.00 © 2016 IEEE

DOI 10.1109/CSE-EUC-DCABES.2016.175

146

webpage that allows developers to zoom in, zoom out, move left
and move right. Fig. 1 shows an example view of the Android
Systrace. Each time slice presents a task at a given period of time.
The Android Systrace provides various kind of tracing data
categories. For example, these categories include graphics,
audio, video, dalvik VM, CPU scheduling, CPU frequency, CPU
load and so on. The Android Systrace can help developers
diagnose various application issues such as UI performance of
the application [4].

Figure 1. The Android Systrace Tool Example

Android Systrace is a two-stage tool: data collecting and data
processing. The data is collected and stored in a trace log file by
the debug tracing kernel module. The data to be collected is
specified as arguments to a Python script [6]. Android Systrace
tool uses a built-in command, called atrace, to collect the tracing
data. Once the trace data to collect is selected using atrace, the
kernel begins collecting trace information. After a period of time,
all data will be transferred from the Android device to an
external computer using the adb tool. Then, those data are
formatted and displayed in a browser.

B.� The Extended Android Systrace Tool Architecture
In order to collect Wakelocks usage data, we need to inform

the kernel to obtain Wakelocks trace. We also need to modify
the final data formatter to display the Wakelocks information
correctly in the browser.

There are two types of the Android Wakelocks: kernel
Wakelocks and application Wakelocks. Kernel Wakelocks are
acquired at the kernel level while application Wakelocks are
acquired at the application level. Tracing both types of
Wakelocks is necessary. For the kernel Wakelocks, we put
tracepoints [7] in the wake_lock() and wake_unlock() functions
which are the entrypoints of the Wakelock management in the
power module of the Linux kernel. We also define a new trace
function and trace format for the Wakelocks trace in
<trace/events/sched.h>. It provides a sysfile for enabling
Wakelocks tracing.

Figure 2. The Architecture of Extended Android Systrace

For the application Wakelocks, we need to create a bridge to
transfer the Wakelocks information from userspace to kernel
space. Since Android applications are usually developed in Java,
the information on the application Wakelocks is firstly generated
in userspace. Using JNI [8], we are able to pass all tracing
information to the native environment. After that, the Wakelocks
information is sent to the kernel space by writing it to a new
character device. The character device driver will handle the
information sent to the kernel space. We put a Wakelock
tracepoint in that driver, hence the kernel will be able to capture
the Wakelocks information from Android applications. Fig. 2
shows the full picture of the extended Android Systrace
Architecture.

III.� TRACING RESULTS
In this paper, we implemented the experiments to capture the

Wakelock trace in various periods of time. We also created a test
application to check the presence of the Wakelock acquired by
the test application in the extending Android Systrace.

A.� Evaluation Environment
All experiments are implemented in the Nexus 7 2012

installed with Android OS 4.4.4. We make some modifications
to the Android source code (AOSP) and the Android kernel and
recompile the whole system in the Ubuntu 12.04 environment.
The test application is developed in Android Studio v1.4 [9]. A
Wakelock is acquired for 20 minutes and then released.

B.� Evaluation Results
Fig. 3, 4, 5 and 6 show the tracing results in the period of 2

minutes, 20 minutes, 1 hour and 2 hours, respectively. Fig. 7
shows the tracing result of executing the test application. The
results indicate that the developed extensions effectively present
an overall picture of Wakelocks usage. We can observe
Wakelocks precision at the granularity of microseconds and how
the kernel and the Android applications are acquiring and
releasing Wakelocks. The trace diagram contains many time
slices with labels. The time slices length represents the acquiring
time, and the label represents the package name or the process.
The areas with red marks in Fig. 3, 4, 5 and 6 are the examples
of time slices. By looking at a time slice and its label, developers
are able to study the behavior and the usage of Wakelocks in
applications of interest.

147147147147

Figure 3. The Extended Android Systrace (2 minutes)

Figure 4. The Extended Android Systrace (20 minutes)

Figure 5. The Extended Android Systrace (1 hour)

Figure 6. The Extended Android Systrace (2 hours)

Figure 7. The Extended Android Systrace (with test application)

148148148148

TABLE�: Comparison between Kernel Wakelock and Application
Wakelock acquiring time

 Call times Acquiring
Time(ns)

Kernel Wakelock 9268 2.15637E+10

Application
Wakelock

466 8.88196E+18

Figure 8. The Detection of Wakelock Bug in a Commercial Application

In Fig. 3, the “media” time slice shows a Wakelock

acquired by “media”, which is an Android system process.
Similarly, in Fig. 4, we can observe an Android system
process acquiring Wakelock, namely “android”. Fig. 5 shows
an application Wakelock time slice. The application name can
be derived from the label “jp.naver.line.android”, which
implies the Line application. In the extended Android Systrace,
the green slices represent application Wakelocks while the
pink slices represent kernel Wakelocks.

If there are many Wakelocks in a systrace, developers can
use the search function, which is located in the right corner of
the browser. Wakelock usage can be searched by package
name. Fig. 7 shows an example of the search function. In Fig.
7, it is clear that our tool can trace the Wakelock acquired by
the developed application, named com.example.testWakelock.

Table 2 shows that the total time spent in kernel Wakelock
is significantly smaller than the total time spent in application
Wakelocks. This observation can hint developers to focus on
optimizing application Wakelocks over kernel Wakelocks.

In this thesis, we actually used our tool to verify
applications from Google Play store. Fig. 8 shows that we
successfully detected a Wakelock bug in a commercial
application [17]. It can be seen that a Wakelock was acquired
but not released. The releasing trace is not captured by our tool,
which will collect both Wakelock acquiring and releasing in
normal case.

IV.�CONCLUSION
Acquiring Wakelocks is necessary to execute background

tasks properly on an Android platform. However, careless
management of Wakelocks can drastically drain the battery
life and degrade the user experience. Although some previous
works try to handle improper use of Android Wakelock by
detecting bugs at compile time or runtime, none of those
works present an overall picture of the Wakelock usage. This
paper introduces a tool for tracing Android Wakelocks at a
fine-grained level by extending the Android Systrace tool. The
experimental results show that our tool could capture both
kernel Wakelocks and application Wakelocks at microsecond
granularity. In addition, we could detect Wakelock bug from

a real Android application by the developed tool. In future
work, we plan to continue development of this tool by
automatically identifying Wakelock bugs and offering hints to
help developers optimize their application power
consumption.

REFERENCES

[1]� Android PowerManager.
http://developer.android.com/intl/ja/reference/android/os/PowerMana
ger.html

[2]� Android Wakelock.
http://developer.android.com/intl/ja/reference/android/os/PowerMana
ger.htmlWakelock

[3]� Android Systrace.
http://developer.android.com/intl/ja/tools/help/systrace.html

[4]� Analyzing UI Performance with Systrace.
http://developer.android.com/intl/ja/tools/debugging/systrace.html

[5]� Android Open Source Project (AOSP).
https://source.android.com/source/index.html

[6]� Android systrace.py.
https://chromium.googlesource.com/android_tools/+/master/sdk/platf
orm-tools/systrace/systrace.py

[7]� Linux Tracepoint.
https://www.kernel.org/doc/Documentation/trace/tracepoints.txt

[8]� Android NDK JNI.
http://developer.android.com/intl/ja/ndk/index.html

[9]� Android Studio.
http://developer.android.com/intl/ja/tools/studio/index.html

[10]� Pratiksha S. Patil, Jinalkumar Doshi, Dayanand Ambawade,
“Reducing power consumption of smart device by proper management
of Wakelocks” Advance Computing Conference (IACC), 2015 IEEE
International. Banglore, pp. 883–887, June 2015

[11]� Faisal Alam, Preeti Ranjan Panda, Nikhil Tripathi, Namita Sharma,
Sanjiv Narayan, “Energy Optimization in Android Applications
through Wakelock Placement” 2014 Design, Automation & Test in
Europe Conference & Exhibition. Dresden, pp. 1-4, March 2014

[12]� Xigui Wang, Xianfeng Li, Wen Wen, “WLCleaner: Reducing Energy
Waste Caused by Wakelock Bugs at Runtime” Dependable,
Autonomic and Secure Computing (DASC), 2014 IEEE 12th
International Conference on. Dalian, pp. 429-434, August 2014

[13]� Kwanghwan Kim, Hojung Cha, “Wake-scope: Runtime Wakelock
Anomaly Management Scheme for Android Platform” EMSOFT '13
Proceedings of the Eleventh ACM International Conference on
Embedded Software. Montreal, pp. 1-10, September 29-October 04,
2013

[14]� Panagiotis Vekris, Ranjit Jhala, Sorin Lerner, Yuvraj Agarwal,
“Towards verifying android apps for the absence of no-sleep energy
bugs” Proceedings of the 2012 USENIX conference on Power-Aware
Computing and Systems. Hollywood, CA, pp. 3, October 2012

[15]� Abhinav Pathak, Abhilash Jindal, Y. Charlie Hu, Samuel P. Midkiff,
“What is keeping my phone awake?: characterizing and detecting no-
sleep energy bugs in smartphone apps” Proceedings of the 10th
international conference on Mobile systems, applications, and services.
Low Wood Bay, Lake District, UK, pp. 267-280, June 2012

[16]� Line application.
https://play.google.com/store/apps/details?id=jp.naver.line.android

[17]� SoulGauge application.
https://play.google.com/store/apps/details?id=jp.co.gamebank.app.sou
lgauge

149149149149

