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Abstract. OSCAR (Optimally Scheduled Advanced Multiprocessor) API
has been designed for real-time embedded low-power multicores to gen-
erate parallel programs for various multicores from different vendors by
using the OSCAR parallelizing compiler. The OSCAR API has been
developed by Waseda University in collaboration with Fujitsu Labo-
ratory, Hitachi, NEC, Panasonic, Renesas Technology, and Toshiba in
an METI/NEDO project entitled “Multicore Technology for Realtime
Consumer Electronics.” By using the OSCAR API as an interface be-
tween the OSCAR compiler and backend compilers, the OSCAR com-
piler enables hierarchical multigrain parallel processing with memory
optimization under capacity restriction for cache memory, local mem-
ory, distributed shared memory, and on-chip/off-chip shared memory;
data transfer using a DMA controller; and power reduction control us-
ing DVFS (Dynamic Voltage and Frequency Scaling), clock gating, and
power gating for various embedded multicores. In addition, a parallelized
program automatically generated by the OSCAR compiler with OSCAR
API can be compiled by the ordinary OpenMP compilers since the OS-
CAR API is designed on a subset of the OpenMP. This paper describes
the OSCAR API and its compatibility with the OSCAR compiler by
showing code examples. Performance evaluations of the OSCAR compiler
and the OSCAR API are carried out using an IBM Power5+ workstation,
an IBM Power6 high-end SMP server, and a newly developed consumer
electronics multicore chip RP2 by Renesas, Hitachi and Waseda. From
the results of scalability evaluation, it is found that on an average, the
OSCAR compiler with the OSCAR API can exploit 5.8 times speedup
over the sequential execution on the Power5+ workstation with eight
cores and 2.9 times speedup on RP2 with four cores, respectively. In ad-
dition, the OSCAR compiler can accelerate an IBM XL Fortran compiler
up to 3.3 times on the Power6 SMP server. Due to low-power optimiza-
tion on RP2, the OSCAR compiler with the OSCAR API achieves a
maximum power reduction of 84% in the real-time execution mode.
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1 Introduction

Multicore processors have been widely used in a variety of applications such as
embedded (consumer electronics) systems, PCs, workstations, and high-performance
computers. In consumer electronics applications, various types of multicore pro-
cessors are used in a wide variety of applications such as image and audio pro-
cessing, face recognition, and real-time controls. For example, from the memory
architecture point of view, while there are conventional SMP multicores, many
multicores in consumer electronics are equipped with a local memory (or scratch
pad memory) such as CELL/BE[1], RP1[2], and RP2[3]. Furthermore, some mul-
ticores have a distributed shared memory such as FR1000[4], RP1, and RP2 and
some have an on-chip shared memory such as MP211[5], RP1, and RP2 in addi-
tion to a local memory. On the other hand, many multicores are equipped with
some kind of power control mechanisms inside a chip, such as DVFS; fine-grained
clock gating; and per-core power gating for ensuring long battery life, preserving
reliability, and enabling small fan-less package.

While current multicores for consumer electronics have several features that
are responsible for achieving high performance with low power, the cost for ap-
plication development is increasing since programmers must take care of usage
for those architectural features such as memory management and power man-
agement.

Some compilers, programming languages, and APIs have been developed to
mitigate the application development cost for consumer electronics multicores.
Source-to-source parallelizing compilers[6, 7] have been developed for ordinary
multiporcessor systems. These compilers preserve portability among different
multiprocessor systems by generating parallelized C or Fortran programs. How-
ever, multi-platform parallelizing compilers for embedded computing systems
have not yet been developed since there are few multi-platform parallel APIs.
Though the Multicore Association has developed multi-platform multicore APIs
and the MCAPI has been released as a communication API[8], other APIs are
still under development. OpenCL has been developed as a multi-platform parallel
API[9]. However, it is intended to be mainly used on accelerators like GPGPU.

On the other hand, the OSCAR multigrain parallelizing compiler has been
developed to fully exploit the potential of both the ordinary multiprocessors and
the multicores. The OSCAR compiler enables multigrain parallel processing[10–
12]; memory control under capacity restriction for cache memory, local memory,
distributed shared memory, and on-chip/off-chip shared memory[13, 14]; data
transfer using DMA controller[15]; and power reduction control using DVFS,
clock gating, and power gating[16]. In order to apply these optimization us-
ing the OSCAR compiler for a variety of consumer electronics multicores, the
OSCAR API has also been developed. That is the OSCAR compiler generates
parallelized C or Fortran programs with OSCAR API, and backend compilers
for target multiprocessors and multicores generate executable object files from
those parallelized programs.

The OSCAR API is designed on a subset of OpenMP[17], which is the de-
fact standard of parallel programing for shared memory multiprocessors. The
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OSCAR API consists of four directives from the OpenMP and 12 newly pre-
pared directives. The main differences between OSCAR API and prior parallel
languages and APIs are that the OSCAR API supports distributed shared mem-
ory and on-chip centralized shared memory in addition to local data memory
in a simple manner, and it employs a user-level power control API. The basic
design policy of the OSCAR API is to keep its specification as simple as possible.

In this paper, the directives in the OSCAR API and its compatibility with the
OSCAR compiler are described. Then, performance evaluation of a combination
of OSCAR compiler and OSCAR API using the IBM Power5+ workstation, the
IBM Power6 SMP server, and the newly developed consumer electronics 8-core
low-power multicore RP2 is carried out.

The rest of this paper is organized as follows. Section 2 provides an overview
of the OSCAR compiler and its execution model. Section 3 describes the direc-
tives in the OSCAR API. The code example related to the OSCAR compiler is
also shown in this section. Section 4 shows the performance evaluation of a com-
bination of OSCAR compiler and OSCAR API. Finally, Section 5 summarizes
the main conclusion of this paper.

2 OSCAR Parallelizing Compiler and Its Execution
Model

This section provides an overview of the OSCAR multigrain parallelizing com-
piler and its execution model. In order to minimize the runtime overhead of
parallel processing, the OSCAR compiler adopts one-time single level thread
creation as its execution model. This execution model creates threads at the
program start point. Synchronizations and scheduling require only two parallel
processing primitives. This execution model affects the design decision of the
OSCAR API.

2.1 Overview of OSCAR Parallelizing Compiler

Multigrain parallel processing exploits multiple grains of parallelism such as
coarse grain task parallel processing, loop iteration level parallel processing, and
statement level near fine grain parallel processing. In this study, loops, function
calls, and basic blocks are defined as coarse grain tasks.

In order to apply multigrain parallel processing to an ordinary sequential
program, the OSCAR compiler firstly decomposes a source C or Fortran program
into coarse grain tasks, namely macro-tasks (MTs), such as basic block (BPA),
loop (RB), and function call or subroutine call (SB). Then, the compiler analyzes
both the control flow and the data dependencies among MTs and represents them
as a macro-flow-graph (MFG). Next, the compiler applies the earliest executable
condition analysis, which can exploit parallelism among MTs associated with
both the control dependencies and the data dependencies. The analysis result is
represented as a macro-task-graph (MTG). If an MT is a subroutine call or a loop
that has coarse grain task parallelism, the compiler hierarchically generates inner
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MTs inside that MT. Then, the compiler groups processor cores into processor
groups (PG) logically and hierarchically,

These MTs are assigned to processor cores by the compiler. If the MTG has
conditional branches or runtime fluctuations, dynamic scheduling is applied to
it. Otherwise, static scheduling is applied.

After generating MTGs, the compiler applies loop iteration level parallel
processing if an MT has loop iteration level parallelism. If an MT does not have
loop iteration parallelism but has statement level parallelism, such an MT is
processed by statement level near fine grain parallel processing[12].

Data locality optimization and data transfer optimization can be applied af-
ter generating MTGs. If multiple MTs share same data, whose size is greater
than that of the cache memory or the local memory, the OSCAR compiler de-
composes these MTs into smaller MTs in order to fit the shared data accessed by
each MT into the cache or the local memory by loop aligned decomposition[13].
Then, these decomposed MTs are scheduled onto processor cores in order to as-
sign MTs, which access same smaller data, successively as much as possible[14].
If the target architecture has a local memory, the compiler assigns processor
private data to the local memory and generates data transfer codes between the
main memory and the local memory. These data transfer codes are overlapped
MT execution as much as possible by data transfer optimization[15].

If there are idle or busy-waiting periods between MTs in a statically scheduled
MTG, the compiler tries to minimize total power dissipation by prolonging the
execution time of MTs with DVFS or applying clock gating and power gating
during the idle periods. This execution mode is named as the fastest execution
mode. Similarly, if the deadline of an MTG is given and there are sufficient
idle periods until the deadline, the compiler also applies DVFS, clock gating,
and power gating[16]. This execution mode is named as the deadline execution
mode. If a power-optimized MTG with deadline is processed iteratively as in
the case of a movie player, this execution mode is named as real-time execution
mode.

2.2 Execution Model of Multigrain Parallel Processing

The OSCAR compiler adopts one-time single level thread creation as its runtime
execution model. This execution model generates threads for each processor core
only once at the program start time. Each thread is assumed to be bound to
only one processor core during the program execution time. MTs generated by
the OSCAR compiler are mapped onto these thread codes. In the case of hierar-
chical parallel processing control, the scheduling and synchronization codes are
processed by an ordinary program code with two runtime primitives. Therefore,
the compiler minimizes the runtime overhead for parallel execution.

Here, the one-time single level thread creation model is shown in Fig.1. In
this figure (Fig.1-(a)), the source program has four MTs such as MT1 1 – MT1 4
at the top-level of the program (the first layer MTG). MT1 3 and MT1 4 have
internal MTGs each of inside them (second layer MTG). These MTs are to be
assigned eight threads, as shown in Fig.1-(b).
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The first layer MTG is scheduled statically at compile time since there is no
conditional branch inside it. The program codes for MT1 1, MT1 2, and MT1 4
are mapped onto the Processor Group 0 involving Thread0 – Thread3, and
MT1 3 are mapped onto the Processor Group 1 involving Thread4 – Thread7,
respectively. Two second layer MTGs are scheduled dynamically at runtime using
dynamic scheduling codes generated by the compiler, due to the presence of
conditional branches. In the case of the one-time single level thread creation
model, execution codes for all MTs are generated onto all threads when dynamic
scheduling is applied to the target MTG. At the scheduled time, a dynamic
scheduling code selects the next MT and assigns it onto the appropriate thread
by sending a scheduling information to that thread.

Considering the synchronizations of this example, there are synchronization
codes, i.e., “SYNC SEND” after MT1 1 and “SYNC RECV” before MT1 3,
generated by the data dependence between these MTs. The OSCAR compiler
generates an assignment statement to a synchronization flag variable as “SYNC
SEND”, and a busy-waiting loop against this flag variable as “SYNC RECV.”
Similarly, barrier synchronizations are carried out after MTs inside MT1 4 are
processed by combinations of assignment statements and busy-waiting loops with
barrier flag variables. Note that such synchronization codes require a memory
consistency primitive such as “flush” directive in the OpenMP.

With regard to dynamic scheduling, the OSCAR compiler generates dis-
tributed scheduler codes and centralized scheduler codes according to the par-
allelism of the target MTG and the number of available processor cores. Dis-
tributed scheduler codes are embedded after each MT, as shown in MT1 4.
Centralized scheduler codes occupy one thread, as shown in Thread7 of MT1 3.
In the case of distributed scheduler codes, scheduling information such as ready
task queue and scheduling table must be processed exclusively in critical sec-
tions. Therefore, a lock primitive such as “critical” directive in the OpenMP is
required.

In summary, thread creation, memory consistency primitive and lock primi-
tive are required for one-time single level thread creation.

3 OSCAR Application Program Interface

This section describes the OSCAR API. This paper especially focuses on how to
associate the OSCAR API with the OSCAR compiler by showing code examples.
Detailed specifications of the OSCAR API v1.0 is available at our website [18].
Note that in this paper, there are a few points that differ between OSCAR API
v1.0 and the OSCAR API, since the OSCAR API is being still discussed for
heterogeneous multicores and many cores. These points are presented in the
remaining of this section.

3.1 Overview of OSCAR API

The OSCAR API is designed on a subset of OpenMP for preserving portability
over a wide range of multicore architectures. An OpenMP-based design can
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Fig. 1. Example of hierarchical MTG (a) and a code image of parallelized code gener-
ated by OSCAR compiler (b).

support both C and Fortran programs. However, in order to avoid the complexity
of a backend compiler and runtime routines, only three directives are chosen from
the OpenMP, such as “parallel sections,” “flush,” and “critical,” which enable
one-time single level thread creation, as described in Section2.2. Note that nested
parallelism is not required for the OSCAR API.

In addition to these three directives, one OpenMP directive (threadprivate) is
extended, and 12 directives are newly added to support the previously mentioned
parallel optimizations carried out using the OSCAR compiler, whose specifica-
tions are simple as possible. Furthermore, the OSCAR memory architecture[12]
is defined as the model multicore architecture of the OSCAR API, as shown in
Fig.2.

The OSCAR memory architecture consists of multiple multicore chips and
an off-chip CSM (Centralized Shared Memory) module. Each multicore chip has
multiple processor cores and an on-chip CSM. Each processor core has a CPU,
an LDM (Local Data Memory) for core private data, a DSM (Distributed Shared
Memory) for synchronization flags and shared data, a DTC (Data Transfer Con-
troller), a TIMER (Timer Unit), an FVR (Frequency and Voltage Control Regis-
ter) and a GROUPBAR (Group Barrier Synchronization module). Each module
in the OSCAR memory architecture may have the FVR. The directives in the
OSCAR API are related to those modules in the OSCAR memory architecture.
If the target architecture does not have some of those modules, directives related
with those modules can be ignored.
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Fig.3 shows a list of directives in the OSCAR API. These directives are clas-
sified into six categories such as Parallel Execution API, Memory Mapping API,
Synchronization API, Data Transfer API, Power Control API, and Timer API.
In this paper, Parallel Execution API, Memory Mapping API, Power Control
API, and Timer API are explained in the remaining of this section.

The compile flow of the OSCAR compiler with the OSCAR API is described
as following: First, a sequential C or Fortran program are parallelized by the
OSCAR compiler. If a source program is a C program, this program is written
in “Parallelizable C,” which stands for C with some restriction around pointer
usage for ease of parallelization by the compiler. The OSCAR compiler generates
a parallelized C or Fortran code with the OSCAR API. This parallelized code is
then compiled by an OpenMP compiler for a server platform, or it is translated
into C or Fortran program with runtime library calls generated by the API
analyzer in front of the backend compiler of the target multicore. Finally, the
backend compiler generates an executable object for the target multicore.
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Fig. 2. OSCAR Memory Architecture as the Model Multicore Architecture

3.2 Parallel Execution API and Memory Mapping API

Parallel Execution API consists of four directives, i.e., parallel section, flush,
critical, and execution. Memory Mapping API also consists of three directives,
i.e., threadprivate, distributedshared, and onchipshared.

Fig.4 shows an example of one-time single level thread creation by Parallel
Execution API. The program shown in Fig.4-(a) is written in C and that shown
in Fig.4-(b) is written in Fortran. As shown in these figures, all the threads are
created at the program start time only once. In the OSCAR API, the proces-
sor cores involved in parallel execution at runtime are called as Virtual Cores
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Fig. 3. List of Directives in OSCAR API

(VCs)1. Each thread is statically bound to one VC with an increasing order of
VC number. For example, main VC0 is executed on VC0, main VC1 is executed
on VC1, and so on.

These figures also show an example of one-to-one synchronization between
VC0 and VC4. This synchronization is processed via variable syncflag and
myversion. Note that syncflag is a shared variable among VCs. On the other
hand, myversion is thread private data, which is stored in the local memory if
the target architecture has a local memory. The synchronization code generated
by the OSCAR compiler is realized by the version number method. Thread-
private variable myversion is incremented at each synchronization time. The
receiver VC, i.e., VC4 in this example, waits for VC0 to send a flag by comparing
the shared variable syncflag with the private variable myversion. Memory
consistency is appropriately maintained by the compiler-inserted flush directives.

Here, if syncflag is specified in an onchipshared directive such as myversion
in a threadprivate directive, syncflag is stored in the onchip centralized shared
memory if the target architecture has an onchip centralized shared memory. Sim-
ilarly, if synclfag is specified in a distributedshared directive, for example, just
after the fourth parallel section directive, syncflag is stored in the distributed
shared memory inside VC4.

3.3 Power Control API and Timer API

The Power Control API consists of the fvcontrol and the get fvstatus directives.
The fvcontrol directive sets the power status of a module to a specified value.
The get fvstatus acquires the current power status from a specified module.
The power status notation used in the Power Control API is an integer value
ranging from -1 to 100. The value from 0 to 100 represents the percentage of
clock frequency of the specified module. For example, 100 is the maximum clock
frequency, 50 is half of the maximum clock frequency, and 0 represents clock off
or clock gating. -1 denotes power gating.

In order to specify the target module such as in the Power Control API, the
OSCAR-module description is introduced. The syntax of the OSCAR-module
description is as follows2:
1 Virtual Processor Core (VPC) in V1.0
2 OSCAR MODULE is FV MODULE in V1.0
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int syncflag;

int myversion;

#pragam omp threadprivate(myversion)

int main()

{

#pragma omp parallel sections

  {

#pragma omp section

    {    main_VC0();    }

#pragma omp section

    {    main_VC1();    }

....

#pragma omp secion

    {    main_VC4();    }

  }

 ...

  return 0;

}

/* for Virtual Core 0 (VC0) */

void main_VC0()

{

  /* MacroTask code */

  ... 

  /* send sync flag to VC4 */

  syncflag = ++myversion;

#pragma omp flush

  /* MacroTask code */

  ...

}

...

/* for Virtual Core 4 (VC4) */

void main_VC4()

{

  /* MacroTask code */

  ...

  /* receive sync flag

     from VC0 */

  myversion++;

  do {

#pragma omp flush

  }

  while (syncflag != myversion);

  /* MacroTask code */

  ...

}

...

      COMMON /FLG/SYNCFLAG

      COMMON /FLG/MYVERSION

!$OMP THREADVRIVATE(MYVERSION)

!$OMP PARALLEL SECTIONS

!$OMP SECTION

      CALL MAIN_VC0()

!$OMP SECTION

      CALL MAIN_VC1()

....

!$OMP SECTION

      CALL MAIN_VC4()

 ...

!$OMP END PARALLEL SECTIONS

      END

C for Virtual Core 0 (VC0)

      SUBROUTINE MAIN_VC0

      COMMON /FLG/SYNCFLAG

      COMMON /FLG/MYVERSION

!$OMP THREADPRIVATE(MYVERSION)

C MacroTask code

      ... 

C send sync flag to VC4

      MYVERSION = MYVERSION+1

      SYNCFLAG = MYVERSION

!$OMP FLUSH

C MacroTask code

      ...

      END

...

C for Virtual Core 4 (VC4)

      SUBROUTINE MAIN_VC4

      COMMON /FLG/SYNCFLAG

      COMMON /FLG/MYVERSION

!$OMP THREADPRIVATE(MYVERSION)

C MacroTask code

      ...

C receive sync flag from VC0

      MYVERSION = MYVERSION+1

  10  CONTINUE

!$OMP FLUSH

      IF (SYNCFLAG .NE.

     $ MYVERSION) GOTO 10

C MacroTask code

      ...

      END

...

(a) Example in C (a) Example in FORTRAN

Fig. 4. Example of Parallel Execution API

([[chip,]vc,](OSCAR_MODULE([submodule]),parameter_list))

Here, parameters enclosed in “[]” can be omitted.

“chip” and “vc” specify the chip number and the VC number, respectively.
If -1 is specified, the specified module is a chip or a core shared module such
as an on-chip centralized shared memory. If “chip” and “vc” are omitted, the
specified module is owned by the VC that processes the directive. “submodule”
specifies the sub-module inside a module by an integer value, if this parameter
exists. This can be used for specifying memory banks inside a memory module.
“parameter list” is a parameter list, which is given to the specified module.

Fig.5-(a) shows a simple example of the Power Control API. In this example,
VC4 sleeps until VC0 reaches synchronization points. Then, VC0 wakes VC4 up
and sends a synchronization flag. Thus, VC4 can reduce power dissipation by
busy-waiting for VC0.

A combination of Power API directives and the get current time directive
from the Timer API can achieve power reduction when a program has a deadline,
or for real-time processing. The get current time acquires the current elapsed
time in the order of micro second. Fig.5-(b) shows an example of power reduction
for a program with a deadline. When VC0 completes the required MTs, VC0
reduces its clock frequency by 25% of the maximum clock frequency. Then, VC0
waits for the specified deadline by monitoring the timer with the get current time
directive. In this example, “0” in the get current time directives denotes the
timer channel number.
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/* for Virtual Core 0 (VC0) */

void main_VC0

{

  /* MacroTask code */

  ... 

  /* wait until deadline

     with low-speed */

#pragma oscar fvcontrol \

  ((OSCAR_CPU()),25)

#pragma oscar get_current_time(time1,0)

  ...

  while (1) {

#pragma oscar get_current_time(time2,0)

    if (deadline<=time2-time1+overhead)

      break;

    /* wait loop */

    for (i=0;i<dummycount;i++);

  }

#pragma oscar fvcontrol \

  ((OSCAR_CPU()),100)

  /* wake-up other VCs */

#pragma oscar fvcontrol \

  (1,(OSCAR_CPU()),100)

...

}

...

/* for Virtual Core 4 (VC4) */

void main_VC4()

{

  /* MacroTask code */

  ...

  /* sleep until

     VC0 wakes me up */

#pragma oscar fvcontrol \

  ((OSCAR_CPU(),0))

  /* receive sync flag from VC0 */

  myversion++;

#pragma omp flush

  while (syncflag != myversion) {

#pragma omp flush

  }

  /* MacroTask code */

  ...

}

...

(a)  Simple Power Control Example (b)  Power Control

 with Deadline Example

/* for Virtual Core 0 (VC0) */

void main_VC0

{

  /* MacroTask code */

  ...

  /* wake-up VC4 */

#pragma oscar fvcontrol \

  (4,(OSCAR_CPU(),100)) 

  /* send sync flag to VC4 */

  syncflag = ++myversion;

#pragma omp flush

  /* MacroTask code */

  ...

}

...

Fig. 5. Example of Power Control API

4 Experimental Evaluations

4.1 Evaluation Environment

The IBM p5 550Q workstation and the p6 595 UNIX server are used for the
scalability evaluation. The p5 550Q has four Power5+ processors, each of which
has two cores. C programs are evaluated on this machine with IBM XL C/C++
for AIX Compiler v10.1 as a backend compiler. The p6 595 has 16 Power6 pro-
cessors, each of which has two cores. Fortran programs are evaluated on this
machine with IBM XL Fortran for AIX v12.1. The purpose of this evaluation
is to show that the combination of the OSCAR compiler and the OSCAR API
works well for the ordinary combination of OpenMP compilers and server ma-
chines. The applicability of the OSCAR API for both C and Fortran is also
shown.

In addition to these machines, the consumer electronics multicore RP2 is also
used for the evaluation. RP2 is developed by Renesas Technology, Hitachi and
Waseda University in the METI/NEDO project. RP2 has eight SH4A low-power
cores driven at 600 MHz on a die. From the memory architecture point of view,
RP2 is an implementation of the OSCAR memory architecture described in Sec-
tion 3.1. This chip supports both the SMP mode and the AMP mode. In the
SMP mode, RP2 can be used as two SMP clusters, each of which has four SH
cores. Cache coherency is maintained at the L1 cache. In the scalability evalu-
ation, only four cores, whose cache coherency are maintained, are used. In the
AMP mode, the local memory, distributed shared memory, and DTU are used.
With regard to the power reduction control mechanism of RP2, DVFS, clock gat-
ing, and power gating for each processor core can be controlled independently
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by software. This mechanism also strongly supports low overhead and fine grain
clock and ensures power and voltage control using the OSCAR compiler.

An API analyzer is developed for RP2. A parallelized C code generated by the
OSCAR compiler is translated into a C code with memory allocation annotations
and some runtime library calls for thread creation, data transfer, power control,
and timer reading. Then, the translated C code is compiled into an executable
binary code by the SH Compiler.

Specifications of these two systems are summarized in Table 4.1.

Table 1. Evaluation Environment

System IBM p5 550Q IBM p6 595 Renesas/Hitachi/Waseda RP2

CPU Power5+ Power6 SH-4A
(1.5 GHz x (4.2 GHz x (600 MHz x 8 cores,

2 cores x 4 chips) 2 cores x 16 chips) 4 cores are used)

L1D-Cache 32 KB/core 64 KB/core 16 KB/core

L1I-Cache 32 KB/core 64 KB/core 16 KB/core

L2 Cache 1.9 MB/2 cores 4 MB/2 cores N/A

L3 Cache 36 MB/2 cores 32 MB/2 cores N/A

4.2 Performances

For carrying out scalability evaluation using IBM p5 550Q and RP2, art and
equake from SPEC 2000, lbm and hmmer from SPEC 2006, mpeg2encode from
MediaBench, and an AAC encoder available on a market from Renesas Tech-
nology are used. The pointer usage is restricted for equake, lbm, hmmer, and
mpeg2encode. In other words, they are modified in Parallelizable C. Some re-
structurings are also applied to them for the ease of parallelization by the com-
piler. These modified C programs are used for both IBM XL C/C++ compiler
and the OSCAR compiler. For RP2, lbm and hmmer are not evaluated due to
size limitation of the main memory. With regard to the IBM p6 595, 14 Fortran
applications are used, such as tomcatv, swim, su2cor, hydro2d, mgrid, applu,
turb3d, apsi, fpppp, and wave5 from SPEC 95, and swim, mgrid, applu and apsi
from SPEC 2000[19].

Fig.6-(a) and (b) show speedups over the sequential execution on IBM p5
550Q and RP2, respectively. As shown in these figures, both p5 550Q and RP2
achieve good scalability along with an increase in the number of processor cores.
For example, 7.1 times speedup for equake and 6.2 times speedup for AACen-
coder can be achieved over the sequential execution on p5 550Q with eight cores,
and 3.3 times speedup for mpeg2encode and 3.4 times speedup for AACencoder
can be achieved on RP2 with four cores. On an average, p5 550Q achieves 5.8
times speedup with eight cores, and RP2 achieves 2.9 times speedup with four
cores. These results show that the combination of the OSCAR compiler and
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the OSCAR API can exploit parallelism in programs and ensure performance
improvement for both the servers and the consumer electronics multicores.
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Fig. 6. Scalability Evaluation Results on IBM p5 550Q and RP2

Fig.7 shows the maximum speedup of p6 595 against sequential execution
up to 32 cores by the OSCAR compiler and XL Fortran compiler. The compiler
options of XL Fortran are “-O5 -qarch=pwr6 -q64” for sequential execution and
“-O5 -qsmp=auto -qarch=pwr6 -q64” for automatic parallelization by XL For-
tran, respectively. As shown in this figure, 26 times speedup for swim and 14
times speedup for mgrid, both of which are from SPEC 2000, can be achieved
by the OSCAR compiler with OSCAR API. Similary, 11 times sppedup and 2.1
times spped for the same applications can be achieved by the IBM XL Fortran.
On an average, the OSCAR compiler achieves 7.3 times speedup over the sequen-
tial execution, and the IBM XL Fortran achieves 2.3 times speedup, respectively.
In summary, the OSCAR compiler can accelerate the XL Fortran compiler by
up to 3.3 times by generating parallelized program in OpenMP or OSCAR API.

Fig.8 shows the evaluation result of power optimization in the real-time exe-
cution mode using RP2 with up to eight cores. An AAC encoder available on a
market from Renesas Technology and an MPEG2 decoder from MediaBench are
used for this evaluation. The MPEG2 decoder is also modified in Parallelizable
C in this evaluation. An audio stream or movie data is processed per frame. The
deadline of the AAC encoder is set to each frame process so that 44.1[frames/sec]
can be achieved. Similarly, the deadline of the MPEG2 decoder is set to each
frame process so that 30[frames/sec] can be achieved. Fig.8 shows the average
power comparison between the minimum number of cores, which can satisfy the
deadline restriction, and eight cores with and without low-power optimization.
For example, the minimum number of cores required for the deadline satisfaction
of the AAC encoder is one and that of the MPEG2 decoder is two.

Therefore, in the case of the AAC encoder, 66% of power consumption can
be reduced by applying low-power optimization with one core, and 84% of power
consumption can be reduced with eight cores. In this case, one core with low-
power optimization and eight cores with low-power optimization consume almost
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the same power since one core is sufficient for real-time encoding. Similarly, in
the case of the MPEG2 decoder, 20% of power consumption can be reduced
with two cores, and 76% of power consumption can be reduce with eight cores.
Note that eight cores with low-power optimization consumed 33% lower power
than two cores. This is because the power control duration becomes longer in
the case of eight cores than in the case of two cores by the parallel execution of
the MPEG2 decoder.

In summary, the OSCAR API can realize low overhead parallel execution
and low-power optimization applied by the OSCAR compiler.
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5 Conclusions

This paper has described the OSCAR API, which realizes multigrain parallel
processing, power reduction, DMA transfer and real-time processing using the
OSCAR compiler for various types of multicore or multiprocessors, such as from
consumer electronics multicores to high-performance servers. The OSCAR API
consists of Parallel Execution API, Memory Mapping API, Data Transfer API,
Synchronization API, Power Control API and Timer API. The evaluation results
show the OSCAR API can be applicable from consumer electronics multicores
to SMP servers, and it allows us to achieve good scalability with the number
of processor cores. The OSCAR API can also realize low-power optimization
using OSCAR compiler with a low overhead. For example, on an average, the
OSCAR compiler with the OSCAR API gives us 5.8 times speedup over the
sequential execution on the 8-core Power5+ workstation and 2.9 times speedup
on RP2 with four cores, respectively. The low-power optimization by the OSCAR
compiler and the API on RP2 achieves a maximum power reduction of 84% for
AAC encoder in the real-time execution mode. In future, we intended to evaluate
local memory management and data transfer optimization. In addition, we also
plan to extend the OSCAR API toward heterogeneous multicores and many
cores.
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