
Multiple-paths Search with Concurrent Thread Scheduling
for Fast AND/OR Tree Search

Fumiyo Takano
Department of Computer Science and Engineering,

Waseda University,
Tokyo, Japan.

Japan Society for the Promotion of Science.
takano@kasahara.cs.waseda.ac.jp

Yoshitaka Maekawa
Department of Computer Science,
Chiba Institute of Technology,

Chiba, Japan.
maekawa@cs.it-chiba.ac.jp

Hironori Kasahara
Department of Computer Science and Engineering,

Waseda University,
Tokyo, Japan.

kasahara@waseda.jp

Abstract

This paper proposes a fast AND/OR tree search algo-
rithm using a multiple-paths concurrent search method.
Conventional heuristic AND/OR tree search algorithms ex-
pand nodes in only a descending order of heuristic eval-
uation values. However, since the evaluation values are
heuristic, a solution node group sometimes includes nodes
with lower evaluation values. The tree which has a solution
node group including nodes with lower evaluation values
requires a long time to be solved by the conventional algo-
rithms. The proposed algorithm allows us to search paths
including nodes with lower evaluation values and paths in-
cluding nodes with higher evaluation values concurrently.
For searching various paths concurrently, the proposed al-
gorithm uses pseudo-threads and a pseudo-thread sched-
uler managed by a user program with low overhead com-
pared with the OS thread management. The pseudo-thread
scheduler can weight the amount of search on each path and
schedule the pseudo-threads. The proposed algorithm can
solve trees which have solutions including nodes with lower
evaluation values also quickly. For performance evalua-
tion, the proposed algorithm was applied to a tsume-shogi
(Japanese chess problem) solver as a typical AND/OR tree
search problem. In tsume-shogi, players can reuse captured
pieces. Performance evaluation results on 385 problems
show that the proposed algorithm is 1.67 times faster on
the average than the previous algorithm df-pn.

1 Introduction

AND/OR tree searches are used for artificial intelligence
such as games, puzzles, route searches, logic programming
language Prolog[5], and the boolean satisfiability problem
(SAT)[9]. The number of searching nodes on the AND/OR
tree increases exponentially with the tree growth; there-
fore, the time for solving the tree lengthens exponentially
as well. Accordingly, fast search algorithms are desired.
Various AND/OR tree search algorithms have been studied
[1, 7, 13, 2, 8], and df-pn (depth-first proof number search)
[7] is especially known as a fast AND/OR tree search algo-
rithm which uses proof and disproof numbers[1] as heuris-
tic evaluation values. Df-pn λ search[8] using proof and
disproof numbers and threats[13, 2] has been also pro-
posed. These conventional algorithms search nodes in only
a descending order of evaluation values because of higher
search priority for highly evaluated nodes. However, since
the evaluation values are heuristic, a solution node group
sometimes does not include nodes with higher evaluation
values. When a solution node group of a tree consists of
nodes with lower evaluation values, searching in an ascend-
ing order of evaluation values sometimes solves the given
tree quicker than searching in a descending order. We do
not know whether evaluation values are not effective before
searching, and whether to search in a descending order of
evaluation values or to search in an ascending order of eval-
uation values.
Therefore, this paper proposes a new AND/OR tree

search algorithm which searches nodes in both descending

OR node

AND node

Figure 1. Example of an AND/OR tree.

and ascending orders of evaluation values concurrently. The
proposed algorithm searches multiple-paths concurrently
by using proposed pseudo-threads. To use the pseudo-
threads enables weighting the amount of search on paths,
and enables scheduling properly pseudo-threads searching
the paths with low overhead. The proposed algorithm
can solve trees which have solution node groups including
nodes with lower evaluation values also quickly.
The outline of this paper is as follows. Section 2 de-

scribes AND/OR trees and conventional search algorithms
for AND/OR trees. Section 3 proposes the fast AND/OR
tree search algorithm which searches nodes in both de-
scending and ascending orders of evaluation values with
a concurrent pseudo-thread scheduling method. Section 4
evaluates the proposed algorithm using tsume-shogi prob-
lems (Japanese chess mating problems) as a typical exam-
ple of an AND/OR tree search problem. Finally, Section 4
concludes this paper.

2 AND/OR Tree Search

An AND/OR tree consists of AND nodes and OR nodes.
An OR node is true when at least one of its children is true.
An AND node is true when all of its children are true. Fig-
ure 1 shows a typical example of an AND/OR tree. In the
problems treated in this paper, the lengths of the solution
sequences of trees are not given. Because the tree size is un-
known before searching, search algorithms sometimes take
a long computation time to solve the tree.
Since the tree growth lengthens the search time,

AND/OR tree search algorithms widely have been stud-
ied to solve larger tree. Depth-first search and best-first
search which are basic algorithms are often used to search
AND/OR trees. Depth-first search expands the deepest
leaf, and best-first search expands the most highly evalu-
ated leaf. The trees which are solvable with best-first search
are larger than the trees which are solvable with depth-first
search while all of memory is not exhausted. However,
best-first search uses larger memory than depth-first search

uses, and best-first search cannot search a tree any more
when all of memory are exhausted. To reap the advan-
tages of depth-first search and best-first search, a modified
depth-first search which expands nodes in the same order
of best-first search, df-pn[7], has been proposed. The df-
pn is a depth-first iterative-deepening search algorithm with
thresholds of evaluation values[7].
The df-pn uses proof and disproof numbers[1] as evalu-

ation values of a node. The proof number of a node is the
number of proved posterity nodes that are required for prov-
ing the node. The disproof number of a node is the number
of disproved posterity nodes that are required for disprov-
ing the node. Therefore, if the proof and disproof numbers
are smaller, then the evaluation value is higher. Therefore,
the proof and disproof numbers, as the evaluation value, are
effective on most AND/OR trees.
The proof number pn(n) and the disproof number dn(n)

at a node n are calculated as follows:

1. n is a leaf node.

(a) node n is true.
pn(n)=0
dn(n)=∞

(b) node n is false.
pn(n)=∞
dn(n)=0

(c) node n is unknown.
pn(n)=1
dn(n)=1

2. n is a interior node.

(a) n is OR node.
pn(n)= min(pn of child nodes)
dn(n)= sum(dn of child nodes)

(b) n is AND node.
pn(n)= sum(pn of child nodes)
dn(n)= min(dn of child nodes)

The df-pn is a depth-first iterative-deepening search al-
gorithm with thresholds of proof and disproof numbers.
The df-pn expands nodes until the thresholds by depth-first
search. When the proof number or the disproof number ex-
ceeds the thresholds at a node, the df-pn does not expand
the node. Then, the df-pn begins the search again after
increasing the thresholds. The df-pn searches nodes in an
ascending order of the proof number in OR nodes and in
an ascending order of the disproof number in AND nodes.
The iterative-deepening algorithms, searching same nodes
iteratively, requires prevention of unneeded re-expansion of
nodes with a transposition table saved small information of
the searched nodes.

OR Node

AND Node

Evaluation valueHigh Low

Path0

Path1

Path2

Path3

Figure 2. Multiple-paths search with concur-
rent thread scheduling.

However, since the evaluation values such as proof and
disproof numbers are heuristic, a solution node group of a
tree often does not include nodes with higher evaluation val-
ues. When a solution node group consists of nodes with
lower evaluation values, searching in an ascending order of
evaluation values solves the tree quicker than searching in a
descending order.

3 AND/OR Tree Search with Concurrent
Multiple-Paths Search

This section proposes a fast AND/OR tree search algo-
rithm with a concurrent thread scheduling method. The pro-
posed algorithm searches nodes in both descending and as-
cending orders of evaluation values concurrently for finding
quickly also solutions including nodes with lower evalua-
tion values.
Figure 2 shows a search by the proposed algorithm.

Child nodes of any nodes are arranged in descending order
of evaluation values, in Figure 2. The proposed algorithm
searched multiple-paths such in Figure 2 concurrently. For
the proper concurrent multiple-paths search, the proposed
algorithm uses pseudo-threads and a pseudo-thread sched-
uler. Since the depth-first iterative-deepening search is used
for the base of the proposed algorithm, the base algorithm
is modified to search nodes in an ascending order of evalu-
ation values.
The proposed algorithm can solve problems quickly

which are solved slowly by the conventional search algo-
rithms.
This paper defines the search in a descending order of

evaluation values such as the best-first search or the df-pn
as a highest evaluation search.

3.1 Search paths for concurrent search

The proposed algorithm searched multiple-paths such
in Figure 2 concurrently. This section describes the paths
searched concurrently.
The proposed algorithm searches concurrently a highly

evaluated path and lowly evaluated paths for searching
highly evaluated nodes and lowly evaluated nodes concur-
rently. The highly evaluated path always selects child nodes
in a descending order of evaluation values. The highly eval-
uated path is a same path of the highest evaluation search.
The lowly evaluated path is a path including lowly evaluated
nodes. The lowly evaluated paths branch from the highly
evaluated path at the each OR node included in the highly
evaluated path. Because an OR node is true when one of
its children is true, branching at OR nodes can reduce the
search time of the tree when the lowly evaluated path is the
part of the solution of the tree. In contrast, because an AND
node is true when all of its children are true, branching at
AND nodes does not affect the search time of the tree sig-
nificantly. Therefore, the lowly evaluated paths branch at
the only OR nodes. The branching nodes are prioritized in
a deepening order of depth[11]. After branching, the paths
pass from the lowly evaluated child node of the branching
nodes to the highly evaluated child node. The search after
branching is detailed in Section 3.3. Shallower and highly
evaluated nodes are passed by more paths.
In Figure 2, Path0 which always selects nodes with the

highest evaluation values at the point in time, is the highly
evaluated path. The other paths are the lowly evaluated
paths.
Because of the concurrent search of the paths such in

Figure 2, the proposed algorithm can search as follows: 1)
search highly evaluated nodes and lowly evaluated nodes
concurrently, 2) search more highly evaluated nodes, 3)
search less lowly evaluated nodes[5, 6, 12].

3.2 Concurrent search by pseudo-threads

This section describes the method for the proper concur-
rent search.
The proposed algorithm uses pseudo-threads and a

pseudo-thread scheduler for searching multiple-paths con-
currently. The pseudo-threads, instead of the threads cre-
ated by OS, search the paths such in Figure 2. The pseudo-
threads used in the proposed algorithm are classified into
two types. One of the pseudo-threads is a leader, and the
others are workers. The leader searches the highly eval-
uated path, Path0 in Figure 2. The workers search lowly
evaluated paths. When the workers complete the search of

Pseudo-thread 0
(Path0)

Pseudo-thread 1
(Path1)

Pseudo -thread
scheduler

OS thread

Pseudo-thread 2
(Path2)

1

2
3

4
5

6

1 2 3 4 5 6

Figure 3. Pseudo-thread scheduling.

assigned paths, then they start searching other unsearched
lowly evaluated paths.
The pseudo-thread scheduler manages the pseudo-

threads with round-robin scheduling. Figure 3 shows the
pseudo-thread scheduling on the proposed algorithm. The
proposed algorithm uses the number of searched nodes as
a quantum for round-robin scheduling to reduce costs of
measurement of a quantum instead of time. Pseudo-thread
switching at the proper point by the pseudo-thread sched-
uler enables the concurrent processing without mutual ex-
clusions.
When a worker has proved or disproved a node included

in the highly evaluated path, the pseudo-thread scheduler
switches the pseudo-thread to the leader despite the process-
ing order of pseudo-threads and the remained quantum for
reduction of the unneeded search.
Quantum and ratios of amount of the search among

pseudo-threads are changeable by users easily. Equally
quantum among all paths reduces the search rate of the
highly evaluated path. Therefore, the proposed algorithm
equalizes the amount of the search on the highly evaluated
path and the total amount of the search on the lowly evalu-
ated paths to increase the search rate of the highly evaluated
path. That is, the worker quantum is calculated using Equa-
tion (1).

Worker quantum =
Leader quantum
Number of workers

(1)

The validity of this search rate is evaluated in Section 4.3.
The two parameters in the proposed algorithm, the quantum
and the number of pseudo-threads, are adjustable.

3.3 Iterative-deepening using evaluation
values

This paper applies proof and disproof numbers[1] to
evaluation values on the proposed algorithm. Smaller

proof and disproof numbers mean higher evaluation values.
Therefore, the leader in the proposed algorithm searches
with the df-pn[7], which is depth-first iterative-deepening
search with thresholds of proof and disproof numbers. The
leader and the df-pn search nodes in an ascending order of
proof or disproof number. The workers search the paths
branching from the leader path to nodes with large proof
numbers. In detail, workers select nodes in an ascending
order of evaluation values (in a descending order of proof
number) among the children of the branching nodes, which
are included in the leader path. Then, the workers search the
subtrees; the roots of the subtrees are the selected nodes.
The search algorithm in the subtrees is equivalent to the
search algorithm of the leader.
However, the evaluation values of the selected nodes

are not in the range of the thresholds of the leader search.
Therefore, the roots of the subtrees are unable to search in
the leader search, which is the ordinary iterative-deepening
with thresholds of the evaluation values. To search these
subtrees with the workers, the proposed algorithm modifies
the thresholds on the root nodes to cover the evaluation val-
ues of the root nodes. The subtrees are searched with the
modified thresholds.

4 Performance Evaluation

This section evaluates performances of the proposed al-
gorithm. The proposed algorithm was implemented as a
solver for Tsume-Shogi problems. In this evaluation, we
compare the search time of the proposed algorithm using
proof and disproof numbers as evaluation values with the
search time of the df-pn which is a typical search algorithm.

4.1 Evaluation environment

The proposed algorithm is evaluated on a computer with
AMD DualCore Opteron 2.6 GHz and 4 GByte memory.
This evaluation uses a core of the dual-core.
The proposed algorithm was applied to a tsume-shogi,

or Japanese chess mating problem, solver. Tsume-shogi
is a typical example of an AND/OR tree search problem.
The evaluation used three tsume-shogi benchmarks, Zoku-
tsumuya-tsumayaruya[4] (benchmark A), Shogi-Muso[3]
(benchmark B) and Shogi-Zuko[3] (benchmark C). These
are often used as benchmarks of solvers of Tsume-Shogi.
Benchmark A consists of 202 problems, benchmark B con-
sists of 100 problems and benchmark C consists of 100
problems. Because five problems in benchmark B and six
problems in benchmark C are also in benchmark A, dupli-
cated problems are excluded. The lengths of solution se-
quences of the problems in the benchmarks are between 9
and 873.

The search trees of tsume-shogi often require a long time
to be solved, because the lengths of the solution sequences
of the trees are unknown before searching. Therefore, this
paper defines the upper limit search time as 18000 sec-
onds. This evaluation did not use the results of the problems
which are not solved by both the traditional and proposed
algorithms within the upper limit search time.

The average speedup ratio of the proposed algorithm to
the df-pn is calculated using Equation (2) shown below.

Average speedup ratio =
Total search time of df-pn

Total search time of proposed algorithm
(2)

Execution with a single pseudo-thread means execution
with df-pn.

4.2 Tsume-shogi (Japanese chess mating
problem)

The evaluation of the proposed algorithm is performed
using tsume-shogi problems as a typical example of an
AND/OR tree search problem. Tsume-shogi problems are
mating problems in shogi (Japanese chess).

The major difference between chess and shogi is that in
shogi a player is able to reuse pieces which have been cap-
tured from the ones opponent, while in chess a captured
piece is discarded. Therefore, a search tree of shogi is ex-
plosively larger than that of chess.

Tsume-shogi is a single player puzzle game based on the
shogi rules, where a player is presented with a game state
(a problem), and must checkmate the King of the Defender
in the least number of moves possible. The Attacker plays
first. The Attacker’s moves must yield a check (a move by
which a piece directly attacks the opponent’s King), the De-
fender must select a move which extends the length of the
mating sequence by avoiding being checkmated as long as
possible. The length of a solution sequence in tsume-shogi
is dependent on the number of plies (a half of a move) that
lead from the given state to a checkmate. A solution se-
quence of tsume-shogi is unique. Furthermore, the length
of a solution sequence is unknown before solving the prob-
lem. Evaluation of AND/OR tree search algorithms using
tsume-shogi trees is useful because a search tree of tsume-
shogi problem is a massive AND/OR tree.

Figure 4 shows an example of a tsume-shogi problem.
Each piece in the upper part of Figure 4 moves in the fashion
shown in the lower part of the same figure. The Attacker
moves the Gold at 3c to 2b; that will be checkmate the King.
The length of the solution sequence in this problem is one
(one ply to check mate).

d c b a

1

2

3

4

玉

金
角

玉: King 金: Gold 角: Bishop

d c b a

1

2

3

4

玉
金

角

Attacker

Defender

Problem Checkmating

Figure 4. Example of tsume-shogi.

4.3 Quantum of pseudo-threads

In the proposed algorithm, the leader quantum is equal
to the worker quantum (shown in Equation 1). There-
fore, this section confirms the pseudo-threads quantum in
the proposed algorithm. We compare “Proposal” which
calculates the quantum with Equation (1), with “Equally”
which uses same quantum among all pseudo-threads, and
“10-times”which calculates the quantumwith Equation (3)
shown below.

Worker quantum =
Leader quantum
Number of workers

× 1
10

(3)

The the leader quantum in “Equally” is lower than that
in “Proposed”, and the the leader quantum in “10-times”
is higher than that in “Proposed”. Figure 5 shows speedup
ratio of “Equally” , “10-times”, and “Proposal” to the df-
pn. The data in Figure 5 are the average speedup ra-
tios among the three benchmarks. In case of two pseudo-
threads, “Equally” is equal to “Proposed”.
Figure 5 illustrates that “Proposed” outperforms the oth-

ers. In any number of pseudo-threads and any quantum,
“Proposal” is faster than “Equally”, and “10-times” and also
the df-pn. “Proposal” is 47% faster than “Equally” in the
case of “100000nodes-4threads”, and 35% faster than “10-
times” in the case of “1000nodes-8threads” The geometric
means of speedup ratios against the df-pn by “Proposed”
1.28, that by “10-times” is 1.08, and that by “Equally” is
1.03. The reason of the low speedup ratios of “Equally” is
that the number of leader’s search nodes in “Equally” is too
small relatively. The speedup ratios of “10-times” approx-
imate 1 because searching too many nodes by the leader
approximates searching with the df-pn. These results show
that “Proposal” is the most effective method because “Pro-
posed” is over 20% faster than “Equally” and “10-times”.

0.8

1

1.2

1.4

1.6

1.8
10
no
de
s-
2t
hr
ea
ds

10
no
de
s-
4t
hr
ea
ds

10
no
de
s-
6t
hr
ea
ds

10
no
de
s-
8t
hr
ea
ds

10
no
de
s-
10
th
re
ad
s

10
00
no
de
s-
2t
hr
ea
ds

10
00
no
de
s-
4t
hr
ea
ds

10
00
no
de
s-
6t
hr
ea
ds

10
00
no
de
s-
8t
hr
ea
ds

10
00
no
de
s-
10
th
re
ad
s

10
00
00
no
de
s-
2t
hr
ea
ds

10
00
00
no
de
s-
4t
hr
ea
ds

10
00
00
no
de
s-
6t
hr
ea
ds

10
00
00
no
de
s-
8t
hr
ea
ds

10
00
00
no
de
s-
10
th
re
ad
s

Quantum-#threads

Sp
ee
du
p
vs
. d
f-
pn

Equally
10-times
Proposal

Figure 5. Search rate and speedup ratio com-
pared with df-pn.

Table 1. Speedup ratio and parameters on
benchmark A.

leader #pseudo-threads
quantum 2 4 6 8 10

10 0.99 0.94 1.02 1.06 0.90
100 1.04 1.14 0.99 1.15 1.04
1000 1.01 1.06 1.10 1.48 1.05
10000 1.23 1.04 1.37 1.00 1.29
100000 1.00 1.21 1.17 1.16 1.06

4.4 The number of pseudo-threads and
quantum

This section evaluates the influence of the parameters
and benchmarks on performances. The two parameters (the
number of pseudo-threads and the quantum) are variable, in
the proposed algorithm. Table 1, Table 2 and Table 3 show
relation between speedup ratios to the df-pn and the param-
eters on the benchmark A, B and C, respectively.
Table 1, Table 2 and Table 3 illustrate that the proposed

algorithm is up to 2.11 time faster than the df-pn, when
the quantum is over 100 nodes. The maximum achieved
speedup ratio is 2.32 when the number of pseudo-threads
is 4 and the quantum is 100 nodes in benchmark C. The
speedups and the parameters are not strongly correlated, in
Table 1, Table 2 and Table 3. Because, a small change of the
quantum or the number of pseudo-threads can lead to large
and variable changes of search nodes and search time.

Table 2. Speedup ratio and parameters on
benchmark B.

leader #pseudo-threads
quantum 2 4 6 8 10

10 1.06 1.05 1.44 1.30 0.91
100 1.18 1.65 1.16 1.66 1.14
1000 1.11 1.24 1.14 1.95 1.22
10000 1.70 1.10 1.69 1.15 1.89
100000 1.03 1.69 1.81 1.65 1.32

Table 3. Speedup ratio and parameters on
benchmark C.

leader #pseudo-threads
quantum 2 4 6 8 10

10 1.96 1.70 1.71 1.42 1.45
100 2.06 2.32 2.03 2.19 1.85
1000 1.75 1.92 1.98 2.11 2.07
10000 1.68 1.71 1.33 1.62 1.53
100000 1.83 1.60 1.81 1.17 1.68

Table 1, Table 2 and Table 3 show that the most effective
parameters vary from benchmark to benchmark. Therefore,
we discuss relation between search times by the df-pn and
influence of the parameters. Table 4 shows speedup ratios
and geometric mean speedups (GM) on the all of bench-
mark A, B and C. Figure 6 shows ratios of search times with
the proposed algorithm with the best parameter set (quan-
tum: 1000, pseudo-threads: 8) to the worst parameter set
(quantum: 10, pseudo-threads: 10) in Table 4. In Figure 6,
plots over 1 means that search with the best parameter set
is faster than that with the worst parameter set. Figure 6 il-
lustrates that superiority of parameters and search times are
not correlated. Therefore, optimum parameters cannot be
determined before searching. 96% of plots shows the best
parameter set is faster than the worst parameter set.
Table 4 shows the proposed algorithm with the best pa-

rameter set is 1.67 times faster than the df-pn. The peaks
of geometric mean speedup ratios are obtained in case that
the quantum is 1000 or 10000, and in case of 8 pseudo-
threads. The proposed algorithm with the best parameter
set is fastest also in benchmark A and B.
The results shown this section show that the proposed al-

gorithm with any parameter except the case of the too small
quantum is almost faster than the df-pn, although optimal
parameters are not determinable before searching. The pro-
posed algorithm in the all 385 problems is 1.67 times faster
at the maximum, and 1.08 times faster at the minimum than
df-pn.

Table 4. Speedup ratio and parameters on all
problems.

leader #pseudo-threads
quantum 2 4 6 8 10 GM

10 1.22 1.16 1.21 1.20 1.08 1.17
100 1.30 1.41 1.25 1.40 1.32 1.34
1000 1.24 1.33 1.36 1.67 1.33 1.38
10000 1.38 1.26 1.56 1.23 1.50 1.38
100000 1.22 1.34 1.36 1.36 1.27 1.31

GM 1.27 1.30 1.35 1.36 1.29 -

 0.1

 1

 10

 100

 0.001 0.01 0.1 1 10 100 1000 10000 10000010
no

de
s-

10
th

er
ea

ds
 /

10
00

no
de

s-
8t

hr
ea

ds

Search time of df-pn[s]

Figure 6. Influence of parameters and search
time of df-pn.

4.5 Relation between speedup ratio and
search time of df-pn

We evaluate the relation between the search times and
the speedup ratios individually.
One of the purposes of the proposed algorithm is large

speedup on the problems which are searched for a long time
by the conventional algorithm. Figure 7 shows the search
times of the df-pn and the speedup ratios of the proposed al-
gorithm with 8 pseudo-threads and 1000 node quantum on
the all benchmarks. Figure 7 shows that 63% of the speedup
ratios of the problems are over 1. Earlier searching of many
various paths including the lowly evaluated nodes results
in fast finding of the solution nodes which require a long
time to be searched by searching only highly evaluated path.
The maximum achieved speedup ratio is 20.03. In this case,
the proposed algorithm requires just only 323.14 seconds to
solve the problem, though the traditional search algorithm
df-pn requires 6471.12 seconds to solve the same problem.
On the problems which are solved for a short time by the

 0.1

 1

 10

 0.001 0.01 0.1 1 10 100 1000 10000 100000

S
pe

ed
up

 r
at

io

Search time of df-pn[s]

Figure 7. Search time of df-pn and speedup
ratio compared with df-pn.

df-pn, speedup ratios are lower than 1. The reason of the
low speedup ratio is an increase in the number of searched
node because of searching the lowly evaluated paths. How-
ever, both the proposed and the conventional algorithms can
solve the problems for just a short time although speedup ra-
tios are low. These tendencies of the graph are the same as
that using of other parameter sets.
Moreover, two unsolvable problems by the df-pn within

the upper limit search time 18000 seconds could be solved
within the upper limit search time by the proposed algo-
rithm. In the two cases, the proposed algorithm could solve
one of the problem in 4774 seconds, and the other in 13693
seconds. In Figure 7, the speedup ratios of these problems
are calculated using the resulting search time of the df-pn
that was bounded by the upper limit search time, 18000 sec-
onds. Therefore, the actual speedup ratios are higher than
3.77, 1.67; this values are the speedup ratios shown in Fig-
ure 7.
The results in Section 4.4 and Section 4.5 show that the

proposed algorithm outperforms the df-pn. According to
the average speedup ratios, the speedup ratios of the pro-
posed algorithm are almost more than 1 regardless of the
parameters. Moreover, the proposed algorithm with proper
parameters is 1.67 times faster than the df-pn. According to
the individual speedup ratios, the speedup ratio is achieved
up to 20.03.

5 Conclusions

This paper proposes a fast AND/OR tree search algo-
rithm with a multiple-paths concurrent search method. To
solve trees faster, the proposed algorithm searches concur-
rently paths including nodes with lowly evaluated nodes and

a path including highly evaluated nodes. The concurrent
search is realized by using pseudo-threads and a pseudo-
thread scheduler for weighting the amount of the search of
the highly evaluated path and managing the pseudo-threads
properly. The proposed algorithm was applied to a tsume-
shogi solver as a typical example of an AND/OR tree search
problem. The evaluation results shows as follows. The pro-
posed algorithm is 1.67 times faster than the typical conven-
tional search algorithm df-pn on the average for 385 prob-
lems on a single processor. The maximum achieved the in-
dividual speedup ratio obtained by the proposed algorithm
is 20.03 compared with the df-pn. Moreover, the proposed
algorithm can achieve speedup without prior parameter de-
termination.
The proposed algorithm is not specialized for a specific

tree nor a specific evaluation function. Therefore, the pro-
posed algorithm can be applied to other AND/OR tree prob-
lems, search algorithms, and evaluation functions.
Also, we have proposed a parallelized version of the pro-

posed algorithm[10]. This parallelized algorithm executed
on four processor cores allows us to solve AND/OR trees
4.17 times faster than the sequential algorithm on an em-
bedded multicore processor, NEC Electronics NaviEngine.

Acknowledgement

This research was partly supported by Grant-in-Aid for
JSPS Fellows, JSPS Global COE Ambient SoC program,
and NEDO Heterogeneous Multicore for Consumer Elec-
tronics project.

References

[1] L. V. Allis, M. van der Meulen, and H. J. van den Herik.
Proof-number search. Artificial Intelligence, 66:91–124,
1994.

[2] T. Cazenave. A generalized threats search algorithm. In
Computers and Games, pages 75–87, 2002.

[3] Y. Kadowaki. Tsumuya Tsumazaruya. Heibonsha, 1975.
[4] Y. Kadowaki. Zoku-Tsumuya-Tsumazaruya. Heibon-Sha,

1978.
[5] M. Kai, K. Kobayashi, and H. Kasahara. An OR parallel

processing scheme of PROLOG using hierarchical pincers
attack search. Trans. of IPSJ, 29(7):16–23, 1988.

[6] H. Kasahasa, A. Itoh, H. Tanaka, and K. Itoh. A parallel
optimization algorithm for minimum execution-time multi-
processor scheduling problem. Systems and Computers in
Japan, 23(13):54–65, 1992.

[7] A. Nagai and H. Imai. Proof for the equivalence between
some best-first algorithms and depth-first algorithms for
AND/OR trees. IEICE TRANS., (10):1645–1653, 2002.

[8] S. Soeda, K. Yoshizoe, A. Kishimoto, T. Kaneko, T. Tanaka,
and M. Muller. λ search based on proof and disproof num-
bers. Trans. of IPSJ, 48(11):3455–3462, 2007.

[9] W. M. Spears. A NN algorithm for boolean satisfiability
problems. Neural Networks, 1996., IEEE International Con-
ference on, 2:1121–1126 vol.2, Jun 1996.

[10] F. Takano, Y. Maekawa, and H. Kasahara. Parallel and con-
current search for fast AND/OR tree search on multicore
processors. In Proc. of Parallel and Distributed Computing
and Networks (PDCN 2009), 2009.

[11] F. Takano, H. Sata, Y. Maekawa, K. Rokusawa, and
N. Miyazaki. Adding parallel and node search to AND/OR
tree hierarchical pincers attack search. Transactions of Infor-
mation Processing Society of Japan, 46(SIG-12):319–329,
2005.

[12] F. Takano, A. Sekine, H. Sata, Y. Maekawa, and K. Roku-
sawa. Hierarchical pincers attack search using proof num-
bers and disproof numbers for AND/OR tree. Transac-
tions of Information Processing Society of Japan, 45(SIG-
11):280–289, 2004.

[13] T. Thomsen. Lambda-search in game trees - with application
to Go. In Computers and Games 2000, pages 19–38, 2002.

	Text1: CISIS2009,Mar.2009.

