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ABSTRACT
This paper proposes a fast AND/OR tree search algo-
rithm using a multiple paths parallel and concurrent search
scheme for embedded multicore processors. Currently,
not only PCs or supercomputers but also information ap-
pliances such as game consoles, mobile devices and car
navigation systems are equipped with multicore processors
for better cost performance and lower power consumption.
However, the number of processor cores and the amount
of memories in embedded multicore processors are limited
for lowering power consumption and chip costs. Develop-
ment of parallel application programs on embedded mul-
ticore processors requires exploitation of parallelism and
effective utilization of small memories. The proposed algo-
rithm allows us to search in parallel many paths including
lowly evaluated nodes and paths including highly evaluated
nodes. The algorithm also uses depth-first search, working
on small memories. The proposed algorithm is applied for
a tsume-shogi (Japanese chess problem) solver as a typical
AND/OR tree search problem on an embedded multicore
processor system, NEC Electronics NaviEngine with four
ARM processor cores. Evaluation results for 100 problems
show that the proposed algorithm executed on two proces-
sor cores is 2.36 times faster, and executed on four proces-
sor cores is 4.17 times faster than the sequential algorithm
on the average.
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1 Introduction

Currently, multicore processors[1, 2, 3, 4], which integrate
multiple processor cores onto a chip, are widely used for
better cost performance and lower power consumption. Not
only PCs, high-end servers and supercomputers but also
information appliances such as game consoles, mobile de-
vices and car navigation systems are equipped with mul-
ticore processors. Multicore processors embedded in in-

formation appliances require a small number of processor
cores and small memories for lowering power consumption
and chip costs. Development of effective parallel applica-
tion programs on embedded multicore processors requires
exploitation of parallelism and effective utilization of small
memory. Automatic parallelization of scientific computa-
tion and multimedia applications, which have large paral-
lelism, has been studied[5, 6]. For difficulty in extraction
of parallelism from programs for basic algorithms such as
sort and search, manual parallelization of the algorithms
has been researched. Map Sort[7], an example of paral-
lelization of a sort algorithm for multicore processors, im-
proves performance scalably.

Speedup of AND/OR tree searches is desired.
AND/OR tree searches are used in processing such as
games, puzzles, route searches, logic programming lan-
guage Prolog[8], and the boolean satisfiability problem
(SAT)[9]. Df-pn (depth-first proof number search) [10] is
known as a fast sequential AND/OR tree search algorithm.
Df-pn uses proof and disproof numbers[11] as evaluation
values. Df-pn λ search[12] using proof and disproof num-
bers and threats[13, 14] has been also proposed. These con-
ventional sequential algorithms search nodes in only a de-
scending order of evaluation values. Conventional parallel
search algorithms also search nodes in only a descending
order of evaluation values. However, since the evaluation
values are heuristic, nodes with higher evaluation values of-
ten are not included in solution nodes. When a group of so-
lution nodes consists of nodes with lower evaluation values,
to search in an ascending order of evaluation values solves
the tree quicker than to search in descending order. Conse-
quently, the conventional parallel search algorithms hardly
achieve super-linear speedup. We do not know whether
evaluation values are not effective before searching, and
whether to search in a descending order of evaluation val-
ues or to search in an ascending order of evaluation values.

Therefore, this paper proposes a parallel AND/OR
tree search algorithm which searches nodes in both de-
scending and ascending orders of evaluation values in par-
allel. Moreover, the proposed algorithm is applied for em-
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Figure 1. Proposed parallel search

beddedmulticore processors equippedwith a small number
of processor cores and small memories. To use effectively
a small number of processor cores, each processor core
searches multiple paths concurrently. To reduce memory
usage, processor cores search in depth-first search; depth-
first search uses a small amount of memory because it does
not keep all active searched nodes exponentially increasing
during search in a memory.

The outline of this paper is as follows. Section
2 proposes the fast parallel AND/OR tree search algo-
rithms for embedded multicore processors. Section 3 eval-
uates the proposed algorithm using tsume-shogi problems
(Japanese chess mating problems) as a typical example of
an AND/OR tree search problem on a multicore processor,
NEC Electronics NaviEngine with four ARM cores. Fi-
nally, Section 4 concludes this paper.

2 AND/OR Tree Search with Multiple Paths
Parallel and Concurrent Search

This section proposes a fast parallel AND/OR tree search
algorithm for embedded multicore processors, which have
a small number of processor cores and small memories.
The proposed algorithm searches nodes in both descending
and ascending orders of evaluation values in parallel for
finding quickly also solutions including nodes with lower
evaluation values. Moreover, in the proposed algorithm the
parallel search of pathsmore than processor cores can solve
trees faster than the parallel search of a small number of
paths. To reduce memory usage, processor cores search
with depth-first search.

2.1 Parallel search path

The proposed algorithm searches a highly evaluated path
and lowly evaluated paths in parallel for searching highly
evaluated nodes and lowly evaluated nodes. The highly
evaluated path always selects child nodes in a descending
order of evaluation values. The highly evaluated path is
a same path of conventional sequential search algorithms
which start searching from the highest evaluated node. The
lowly evaluated path is a path including lowly evaluated

nodes. The lowly evaluated paths branch from the highly
evaluated path at the each node included in the highly eval-
uated path. The branch nodes are prioritized in the follow-
ing order: 1) a deepening order of depth in OR nodes, 2)
a shallowing order in AND nodes[15]. After branching,
the paths pass from the lowly evaluated child node of the
branch node to the highly evaluated child node. The search
after branching is detailed in Section 2.4. Shallower and
highly evaluated nodes are passed by more paths.

Figure 1 shows a search by the proposed algorithm.
Child nodes of any nodes are arranged in descending order
of evaluation value, in Figure 1. Path0, always selecting
nodes with highest evaluation values at the point in time,
is the highly evaluated path. The other paths are the lowly
evaluated paths.

Because of the parallel search of the paths such in
Figure 1, the proposed algorithm can search as follows: 1)
search highly evaluated nodes and lowly evaluated nodes in
parallel, 2) search highly evaluated nodes by a large num-
ber of processor cores, 3) search lowly evaluated nodes by
a small number of processor cores.

2.2 Parallel and concurrent search

Each processor core on a multicore processor system
searches multiple paths concurrently so that the multicore
processor system searches in parallel more paths than the
number of processor cores. The processor cores used in
the proposed algorithm are classified into two types. One
of the processor cores is a leader, and the others are work-
ers. The leader searches the highly evaluated path only.
The workers search multiple lowly evaluated paths con-
currently. The leader searches only the highly evaluated
path which is the same path as the best sequential search
algorithm, to prevent performance degradation from the se-
quential algorithm. The concurrent search of multiple paths
by the workers allows the parallel search of paths more pro-
cessor cores in the multicore processor systems as a whole.

The parallel and concurrent search is described with
Figure 1. In Figure 1, PE0 is the leader, and PE1, PE2
are the workers. Each worker searches two paths, therefore
five paths in total are searched. Search paths are assigned
to the workers cyclically. For example, Path1 and Path3 are
assigned to PE1. Meanwhile, Path2 and Path4 are assigned
to PE2.

Synchronization among processor cores is unneeded
because each processor core can search the paths individu-
ally. The parallel search of paths more than processor cores
on a small number of processor cores solves trees more
quickly.

2.3 Concurrent search by pseudo-threads

The workers search multiple paths concurrently. The pro-
posed algorithm uses pseudo-threads and pseudo-thread-
schedulers for the concurrent search.
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Figure 2. Threads and pseudo-threads

The pseudo-threads, instead of the threads created by
OS, search the paths concurrently on the workers. The
pseudo-threads search the different paths in a thread which
is created by OS for each processor core. Pseudo-thread
1-1 in Figure 2 searches Path1 on PE1 in Figure 1, and
pseudo-thread 1-2 in Figure 2 searches Path3 on PE1 in
Figure 1. When the pseudo-threads complete the search of
assigned paths, then they start searching other unsearched
lowly evaluated paths.

The pseudo-thread-scheduler manages the pseudo-
threads. The pseudo-threads and the pseudo-thread-
scheduler operate on a worker thread (see Figure 2). The
pseudo-thread-scheduler can schedule pseudo-threads as
follows; 1) although actual concurrently searchable paths
are less than requested paths, (pseudo-) threads which are
not searching any paths do not use resources; 2) mutual
exclusions among pseudo-threads in a same thread are un-
needed; 3) grains of the concurrent search and ratios of
amount of the search among pseudo-threads are change-
able with small overheads.

2.4 Iterative-deepening using evaluation values

This paper applies proof and disproof numbers[11] to eval-
uation values on the proposed algorithm. Smaller proof
and disproof numbers mean higher evaluation values. The
path searched by the leader is the same path searched by df-
pn[10], which is iterative-deepening depth-first search with
threshold of proof and disproof numbers. The leader and
the df-pn search in an ascending order of proof or disproof
number. The workers search the paths branching from the
leader path to nodes with large proof or disproof number. In
detail, workers select nodes in an ascending order of eval-
uation values (in a descending order of proof or disproof
number) among the children of the branch nodes, which are
included in the leader path. Then, the workers search the
subtrees: the roots of the subtrees are the selected nodes.
The search algorithm in the subtrees is equivalent to the
search algorithm of the leader. The evaluation values of
the selected nodes are lower than thresholds of the leader
search. Therefore, the roots of the subtrees are unable to
search in the leader search, which is the ordinary iterative-
deepening with thresholds of evaluation values. To search
these subtrees by the workers, the proposed algorithmmod-
ifies the thresholds on the root nodes to cover the evaluation
values of the root nodes. The subtrees are searched with the

modified thresholds.
The iterative-deepening algorithm, searching same

nodes iteratively, requires prevention of unneeded re-
expansion of nodes with a transposition table saved small
information of the searched nodes.

2.5 Memory usage

The proposed algorithm consumes only a small amount of
memory.

The space complexity of df-pn, the sequential algo-
rithm in depth-first, is O(d) (d means the maximum search
depth). Although the transposition table generally requires
larger space than others such as nodes require, the iterative-
deepening is able to search also on a small amount of mem-
ory for the transposition table.

The space complexity of the proposed algorithm, par-
allelized df-pn, is O(d · p) (p means the number of the
pseudo-threads). All processor cores are able to share the
transposition table. The shared transposition table requires
a memory as same amount of that used by df-pn. Sharing
the transposition table can improve efficiency of the search,
because a processor core refers information obtained by
other processor cores.

3 Performance Evaluation

The performance of proposed algorithm was evaluated on
an embeddedmulticore processor system, NEC Electronics
NaviEngine with four ARM MP11 cores. The proposed
algorithm was implemented as a solver for Tsume-Shogi
(Japanese chess mating) problems. In this evaluation, we
compare the search time of the proposed algorithm with
the search time of df-pn, the sequential algorithm.

3.1 Evaluation environment

The proposed algorithm is evaluated on an embedded mul-
ticore processor system, NEC Electronics NaviEngine. The
NaviEngine is equipped with MPCore with four ARM
MP11 399 MHz cores, and is an SMP system. Figure
3 shows an architecture of the NaviEngine, and Table 1
shows a specification of the NaviEngine. The proposed al-
gorithm used 16 MB of the memory for the transposition
table.

The proposed algorithm was applied for a tsume-
shogi, or Japanese chess mating problem, solver. Tsume-
shogi is a typical example of an AND/OR tree search prob-
lem. The evaluation used a tsume-shogi benchmark, Shogi-
Zuko[16]. The benchmark consists of 100 problems. The
lengths of solution sequences of the problems in the bench-
mark are between 9 and 611.

The search trees of tsume-shogi often require a long
time to be solved, because the lengths of the solution se-
quences of the trees are unknown before the search is con-
ducted. Therefore, this paper defines the upper limit search
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Table 1. Specification of NaviEngine

ARM11 MPCore
Clock frequency 399 MHz
Instruction cache 32 KByte
Data cache 32 KByte
Main memory 256 MByte

time as 3600 seconds. Unsolvable problems within the up-
per limit search time are not used on the evaluation.

Each worker searches up to four paths concurrently,
and searches 1000 nodes while a pseudo-thread turn. Ex-
ecution by one processor core means execution with the
sequential algorithm, df-pn. The relations of the number
of the worker paths to the number of the total search paths
including the leader path are shown in Table 2.

3.2 Tsume-shogi (Japanese chess mating problem)

The evaluation of the proposed algorithm is performed
using tsume-shogi problems as a typical example of an
AND/OR tree search problem. Tsume-shogi problems are
mating problems in shogi (Japanese chess).

The major difference between chess and shogi is that
in shogi a player is able to reuse pieces which have been
captured from the ones opponent, while in chess a captured
piece is discarded. Therefore, a search tree of shogi is ex-
plosively larger than chess.

Tsume-shogi is a single player puzzle game based on
the shogi rules, where a player is presented with a game
state (problem), and must checkmate the King of the De-
fender in the least number of moves (solution sequence)
possible. The Attacker plays first. The Attacker’s moves
must yield a check, the Defender must select a move which
extends the length of the mating sequence by avoiding be-
ing checkmated as long as possible. The length of a solu-
tion sequence in tsume-shogi is dependent on the number
of plies (a half of moves) that lead from the given state to a
checkmate. A solution sequence of tsume-shogi is unique.
Furthermore, the length of a solution sequence is unknown
before solving the problem. Evaluation of AND/OR tree
search algorithms using tsume-shogi trees is useful, be-

Table 2. Number of search paths searched by each worker
processors and by all processors

# core # worker path # total path
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Figure 4. Example of Tsume-Shogi

cause a search tree of tsume-shogi problem is a massive
AND/OR tree.

Figure 4 shows an example of a tsume-shogi prob-
lem. Each piece in the upper part of Figure 4 moves in the
fashion shown in the lower part of the same figure. The
Attacker moves the Gold at 3c to 2b; that will be check-
mate the King. The length of the solution sequence in this
problem is one (one ply to check mate).

3.3 Evaluated results

This section evaluates the performance of the proposed al-
gorithm.

First, we discuss the average speedup ratios. The av-
erage speedup ratio of the proposed algorithm is calculated
using Equation (1) shown below.

Speedup ratio =
Total search time of df-pn
Total search time of proposal

(1)

The average speedup ratios of the proposed algorithm to
df-pn are shown in Figure 5. Figure 5 shows that the pro-



Figure 5. Average speedup ratio

posed algorithm, each worker searches one path, is 1.76
times faster for two processor cores than the sequential al-
gorithm, 2.78 times faster for three processor cores than the
sequential algorithm, and 3.77 times faster for four proces-
sor cores than the sequential algorithm. The proposed algo-
rithm scales almost linearly. The reason of the speedups is
to search highly evaluated nodes and lowly evaluated nodes
in parallel. Therefore, the proposed algorithm can find so-
lution nodes early. Moreover, the increases in the worker
paths searched concurrently lead to the increases in the
speedup ratios. On two processor cores, executionwith two
worker paths is 23% faster, execution with three worker
paths is 28% faster, and execution with four worker paths
is 34% faster than that with one worker path. On four pro-
cessor cores, execution with two worker paths is 5% faster
than that with one worker path, executionwith three worker
paths is 10% faster than that with one worker path, and ex-
ecution with four worker paths is 11% faster than that with
one worker path. The reason of the speedups is that the
increases in the search paths conduce to earlier search of
the solution nodes, which are unfindable with the parallel
search of a small number of paths. The decreases in the
number of processor cores grow the effects of the increase
in the search path because to search too many paths dimin-
ishes earlier findabllity of solution nodes newly. In case of
four worker paths, the proposed algorithm executed on two
processors is 2.36 times faster, executed on three proces-
sors is 3.27 times faster, and executed on four processors
is 4.17 times faster than the sequential algorithm on the av-
erage. These speedup ratios are larger than the number of
processor cores, although the conventional parallel search
algorithms hardly achieve super-linear speedup. The pro-
posed algorithm executed by four processor cores with four
worker paths reduces the average search time from 446.10
seconds in the sequential to 106.99 seconds.

The speedup ratios change according to problems.
Next, we evaluate the relation between the search times
and the speedup ratios individually. Figure 6 shows the
search times of the sequential algorithm and the speedup
ratios of the proposed algorithm. In Figure 6, the proposed
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algorithm is executed on four processor cores, and each
worker searches four paths concurrently. Figure 6 shows
that 23% of the speedup ratios of the problems are over 4.
Earlier searches of many paths including the lowly evalu-
ated nodes result in the fast find of the solution nodes which
require a long time to be searched by searching only highly
evaluated nodes. The maximum achieved speedup ratio is
44.39. The problem achieving the maximum speedup ratio
requires 30.53 seconds to be searched by the sequential al-
gorithm, and 0.69 second to be searched by the proposed al-
gorithm. In 5% of the problems, the proposed algorithm is
slower than the sequential search. However, these problems
require just a short time to be solved by both the sequential
and the proposed algorithms. For example, the problem
of the minimum speedup ratio requires 0.09 second to be
searched by the sequential algorithm and 0.13 second to be
searched by the proposed algorithm. The extended time is
only 0.04 second. Therefore, the small speedup ratios are
practically ignorable.

Finally, the maximum search depth d on the evaluated
problems is about 150. The proposed algorithm is effective
also on embedded multicore processors, which have small
memories, because the space complexity of the proposed
algorithm is O(d · p).

These results show that the proposed algorithm can
solve problems quickly on embeddedmulticore processors,
which have a small number of processor cores and small
memories. This conclusion is supported by as follows; 1)
the average speedup ratios are larger than the number of
processor cores, 2) the search time of a problem which the
maximum speedup is achieved on is reduced from 30.53
seconds in the sequential algorithm to 0.69 second in the
proposed algorithm, 3) the memory requirement of the pro-
posed algorithm is linear complexity.

4 Conclusions

This paper proposes a fast parallel AND/OR tree search
algorithm for embedded multicore processors, which have
a small number of processor cores and small memories.



To solve trees faster on embedded multicore processors,
the proposed algorithm searches more than processor cores
paths including lowly evaluated nodes and a path including
highly evaluated nodes in parallel. The concurrent search
by each processor realizes the parallel search of paths more
than processor cores. Processor cores search paths based
on depth-first search to reduce memory usage. The pro-
posed algorithm was applied for a tsume-shogi solver as
a typical example of AND/OR tree search problems. The
performance of the proposed algorithm was evaluated on
NaviEngine with four processor cores and 256 MB mem-
ory. The evaluation results shows as follows. The proposed
algorithm executed on four processor cores is 4.17 times
faster than the sequential algorithm on the average. The
average search time is reduced from 446.10 seconds in the
sequential algorithm to 106.99 seconds in the proposed al-
gorithm. The maximum achieved individual speedup ra-
tio obtained by the proposed algorithm executed on four
processor cores is 44.39. The increases in the number of
the concurrent search path allow us the increases in the
speedup ratios. The concurrent search of four paths by each
processor core is 34% faster than the search of one path
by each processor core. For the reasons stand above, the
proposed algorithm can be applied for search on handheld
game consoles and mobile devices.
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