Japanese Challenges for Multicore

Low Power High Performance Multicores, Compiler and API

Dr. Hironori Kasahara

Professor, Department of Computer Science Director, Advanced Chip-Multiprocessor Research Institute Waseda University

http://www.kasahara.cs.waseda.ac.jp

Intel AAF in Taipei, Oct. 21, 2008

METI/NEDO National Project

Multi-core for Real-time Consumer Electronics

- <Goal> R&D of compiler cooperative multicore processor technology for consumer electronics like Mobile phones, Games, DVD, Digital TV, Car navigation systems.
- <Period> From July 2005 to March 2008
- < Features > Good cost performance
 - •Short hardware and software development periods
 - Low power consumption
 - •Scalable performance improvement with the advancement of semiconductor
 - •Use of the same parallelizing compiler for multi-cores from different vendors using newly developed API

API: Application Programming Interface

(2005.7~2008.3) * *

開発マルチコアチップは情報家電へ

**Hitachi, Renesas, Fujitsu, Toshiba, Panasonic, NEC

8 Core RP2 Multicore Designed to Support Compiler Optimization

Process	90nm, 8-layer, triple-
Technology	Vth, CMOS
Chip Size	104.8mm ² (10.61mm x 9.88mm)
CPU Core Size	6.6mm ² (3.36mm x 1.96mm)
Supply	1.0V-1.4V (internal),
Voltage	1.8/3.3V (I/O)
Power	17 (8 CPUs,
Domains	8 URAMs, common)

8 SH4A Multicore RP2 Based on OSCAR Architecture

Demo of NEDO Multicore for Real Time Consumer Electronics at the Council of Science and Engineering Policy on April 10, 2008

第74回総合科学技術会議【平成20年4月10日】

第74回総合科学技術会議の様子(1)

第74回総合科学技術会議の様子(2)

第74回総合科学技術会議の様子(3)

第74回総合科学技術会議の様子(4)

CSTP Members Prime Minister: Mr. Y. FUKUDA

Minister of State for Science, Technology and Innovation **Policy:**

Mr. F. KISHIDA

Chief Cabinet Secretary:

Mr. N. MACHIMURA

Minister of Internal Affairs and

Communications:

Mr. H. MASUDA

Minister of Finance:

Mr. F. NUKAGA

Minister of **Education, Culture,** Sports, Science and Technology: Mr. K. TOKAI

Minister of **Economy, Trade and Industry:**

Mr. A. AMARI

OSCAR Parallelizing Compiler

- Improve effective performance, cost-performance and productivity and reduce consumed power
 - Multigrain Parallelization
 - Exploitation of parallelism from the whole program by use of coarse-grain parallelism among loops and subroutines, near fine grain parallelism among statements in addition to loop parallelism
 - Data Localization
 - Automatic data distribution for distributed shared memory, cache and local memory on multiprocessor systems.
 - Data Transfer Overlapping
 - Data transfer overhead hiding by overlapping task execution and data transfer using DMA or data pre-fetching
 - Power Reduction
 - Reduction of consumed power by compiler control of frequency, voltage and power shut down with hardware supports.

MTG of Su2cor-LOOPS-DO400

■ Coarse grain parallelism PARA_ALD = 4.3

Power Reduction by Power Supply, Clock Frequency and Voltage Control by OSCAR Compiler

• Shortest execution time mode

Realtime processing mode with dead line constraints

API and Parallelizing Compiler in METI/NEDO Advanced Multicore for Realtime Consumer Electronics Project

Details of API: See http://www.kasahara.cs.waseda.ac.jp/

Performance of OSCAR Compiler Using the Multicore API on Intel Quad-core Xeon

• OSCAR Compiler gives us 2.09 times speedup on the average against Intel Compiler ver.10.1

Performance of OSCAR Compiler Using the Developed API on 4 core (SH4A) OSCAR Type Multicore

3.31 times speedup on the average for 4cores against 1core

Processing Performance on the Developed Multicore Using Automatic Parallelizing Compiler

Speedup against single core execution for audio AAC encoding

Power Reduction by OSCAR Parallelizing Compiler for MPEG2 Decoding

MPEG2 Decoding with 8 CPU cores

Low Power High Performance Multicore Computer with Solar Panel

> Clean Energy Autonomous

> Servers operational in deserts

