Poster Session by Ambient GCOE RA, July 14, 2008

Compiler Cooperative Heterogeneous Multicore Processor"

Akihiro Hayashi, Yasutaka Wada, Hiroaki Shikano, Jun Shirako, Keiji Kimura, Hironori Kasahara Dept. of Computer Science and Engineering

Motivation

- Heterogeneous Multicore
 - Multicore processor + Accelerator
 - Mainstream in Consumer Electoronics

How can we cope with this problem?

Our approach : Parallelizing Compiler and cooperated heterogeneous multicore

Multigrain Parallelization

For Heterogeneous Multicore

Core-grouping on heterogeneous multicore

to realize multigrain parallelization

Static Scheduling Scheme

for Heterogeneous Multicore

MT2 MT3

CPU Core For All MT

- Grouped

Accelerator Core

NOT Grouped

- Simulation Result
- 4CPU+4ACC (Hitachi:300MHz, 0.7W)
- Pentium 4 (Intel:3.2GHz, 72W)

Accelerator Core

(CPU Controller) + (Memory) + (ACC)

CPU DTU

- LPM (Local Program Memory) LDM (Local Data Memory)
- DTU (Data Transfer Unit) DSM (Distributed Shared Memory) FVR

OSCAR Heterogeneous

Multicore Processor

Chip CSM

CSM (Centralized Shared Memory) (Frequency/Voltage register

We are Proposing OSCAR Parallelizing Compiler and OSCAR Heterogeneous multicore

MT6

MTG

Config

Multigrain Parallelization

- Exploitation of Multi-level Parallelism
 - Coarse-grain Parallelism
 - Subroutine, Loop, Basic Block
 - Fine-grain Parallelism
 - Loop Level Parallelism
 - Near-fine-grain Parallelism Statement Level Parallelism

for (i = 0; i < 100; i ++) { a[i] = b[i] = 0; MT1 func(c); MT2 d = d + a[20]; e = c[5] + a[10]; МТ3

for (i = 0; i < 100; i ++) {

Frequency

Memory

Access Latency

Power Dissipation

(per 1 core)

Processor

Frequency

Cache Size

Pentium 4

MT4

OSCAR Heterogeneous Multicore SH4A FE-GA(DRP)

Details about simulation Evaluated Application : MP3 Encoder

300 MHz (SH,FE,Bus, Memory)

SH4A:150 mW, FE-GA:210 mW (@300MHz, 1.0V, 90nm proces)

Intel Pentium 4

3.2 GHz

Linux 2.2.4 + g77 (u

L1: 8KB, L2: 512 KB

LDM: 1 cycle DSM : 1 cycle(local), 4 cycle(remote) Off-Chip CSM:16 cycle

70 W (@3.2GHz, 1.5V, 0.13 umprocess)

- OSCAR Compiler Generates Hierarchically-Clustered Macro-Tasks (MT)
 - Subroutine Block(SB) Basic Block(BB)
 - Loop Block(RB)
- Macro-Task Graph (MTG)
 - Task Graph considering Control-Flow, Data-Dependency

Performance on a OSCAR Heterogeneous Multicore

Optimization for higher throughput

All Accelerator MT is NOT always assigned to DRP

- 0.7W:28% Power reduction by Compiler Control

Power Reduction Scheme For Low Power Consumption

Fastest Execution Mode

Compiler achieves low power dissipation by controlling appropriate F/V state for each MT

Conclusions

- Parallelizing Compiler and cooperated heterogeneous multicore
 - Effective use of accelerator
 - Controlling approproate F/V state
 - Realize High -performance, Low power dissipation
 - 4SH+4FE @300MHz = Pentium 4 @3.2GHz with 1/100 power dissipation
- **Future Work**
 - Applying our method to real -chip

Waseda University Global COE Program

"International Research and Education Center for Ambient SoC"